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18 Lead Identification by Virtual Screening

Andreas K̈amper, Didier Rognan, Thomas Lengauer

18.1 Introduction

The identification of new drugs is a research topic of outstanding interest. Due to recent
progress in the determination of several complete genome sequences including the human
genome, the structural genomics projects aiming for structure determination of all naturally
occurring protein folds, new techniques for target validation, and the advances in bioinformat-
ics, our understanding of the nature of many diseases and their causative facts is constantly
increasing. These efforts help to achieve the goal to identify novel small molecules interacting
with proteins and in this way find new drug targets. In the year2000 it has been anticipated
that the number of potential drug targets will increase tenfold [47] which was too optimistic
from todays view [177]. The number of druggable proteins is more likely to be� 2,200 –
3,000 [81, 174]. Of them� 600 – 1,500 are disease-related and thus are putative drug targets
for small-molecule drugs [81].

The availability of new targets calls for effective systematic procedures for finding putative
drugs that bind to these targets. The process of searching through a collection of compounds
for molecules showing biological activity against a given target is calledlead identification.
This lead identification is ascreeningprocedure (Section 18.1.1) and part of the overall drug
discovery process. It can be subdivided into several individual steps (Section 18.1.2). As
a prerequisite for screening, the molecules which are tested against the target, thescreening
compounds(Section 18.1.3), have to be preprocessed (Section 18.2). The actual screening can
be performed with a variety of methods outlined in Section 18.3. The results obtained from
these methods need to be analyzed and interpreted (Section 18.4). The final Sections 18.5 and
18.6 of this chapter provide recent case studies and critical evaluations of structure-based and
ligand-based virtual screening techniques.

18.1.1 Screening techniques

Until a few decades ago, the search for drugs was a trial-end-error procedure, with the target
proteins being mostly unknown. In the last few decades of thetwentieth century, two different
systematic techniques for searching for drugs have become accessible. Both of them are
based on the fact that, increasingly, the target proteins for drugs or putative drugs have been
identified. The two approaches are:
� High-Throughput Screening (HTS) is an experimental technique, where in a fully-auto-

mated fashion, a robot tests all molecules from a library against a molecular test system
[78].
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� Virtual Screening (VS), on the other hand, is a pure computational technique. Here, the
computer is used to estimate biological activities, e.g binding affinities. This includes
one or more computational techniques.

These techniques can complement each other in the sense thatVS guides the experimental
setup of HTS, but recently VS is also more and more seen as an alternative to HTS [101].
There are many concepts for the integration of both approaches [7, 69], showing the benefit of
including experimental andin silico methods in the drug discovery studies. As example, VS
methods can be used to select a subset of compounds for HTS or to analyze the results of a
HTS experiment.

Due to their different nature, VS and HTS techniques have different advantages and dis-
advantages. For HTS, the major drawback is the cost of the experiments. The cost is mainly
determined by the purchase of compounds of about US$ 1.00 percompound [198]. This has
to be multiplied by the number of compounds used per HTS run, typically on the order of a
few hundred thousands. In addition, supplies and an assay are needed. For both the cost is
highly depending on the type of target. On the other hand, themajor limitation for VS is the
need of prerequisite knowledge about the binding process. If there are neither known actives
which can serve as templates nor a 3D-structure of the targetprotein, VS cannot be used.
Either the three-dimensional structure of the target must be known, then methods of structure-
based design can be used (see Chapter 16). The other possibility is that at least one ligand is
known that binds to the target, such as the natural substrateor another inhibitor. In the latter
case, methods of ligand-based design can be applied. A substantial advantage of VS is its
applicability to not yet synthesized,virtual compounds. This facilitates screening of virtual
combinatorial libraries with up to billions of molecules. It is obvious that VS methods must
be very efficient to deal with such large numbers of compounds. Thus, often not only a single
technique is used for VS. Instead, screening proceeds in a sequence of steps each of which
reduces the number of cinsidered compounds, starting with very fast techniques, followed by
more advanced but computationally more expensive techniques.

Within this chapter we will cover all computational aspectsof VS. The sections on prepro-
cessing of libraries (Section 18.2) and post-processing ofhit lists (Section 18.4) are also valid
for HTS. However, we will exclude the more technical aspectsof data handling and informa-
tion storage of HTS. Furthermore, the structure-based design techniques covered in detail by
Rareyet al. in Chapter 16 of this volume will not be included here.

18.1.2 Drug discovery process

Drug discovery is a time-consuming and expensive process [44] which involves a number of
steps. Although the process is not linear — several of the steps have to be repeated itera-
tively — it is often represented as a pipeline (Figure 18.1).Within the pipeline, screening
is performed during hit identification after a suitable drugtarget has been identified and val-
idated. A hit can be defined as a compound which exhibits a strong binding affinity to the
target. In order to perform a screening run, first a collection of compounds (Section 18.1.3)
is submitted to the pipeline. This collection has to be prepared for screening using a number
of preprocessing steps (Section 18.2.1). Specifically, unsuitable compounds are discarded by
filtering steps. Next within the pipeline a structure-basedor ligand-based technique is applied
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Figure 18.1: The drug development process. Screening is applied for reducing the number of initial
compounds to a hitlist of molecules with a high binding affinity. Compounds from the hitlist are sub-
sequently optimized to leads. The final steps (not shown) arethen the finding of candidate structures,
clinical trials, and finally the approval of the new chemicalentity (NCE) by the authorities.

to further restrict the number of compounds (for ligand-based methods see Section 18.3, for
structure-based methods see Chapter 16). This is not necessarily performed in a single step.
Quite common is also the use of several cascading techniques, starting with a fast but inac-
curate method to exclude many compounds, ending with a slow but better method to screen
the most promising compounds (see Sections 18.5 and 18.6 forrecent examples). Finally, a
number of molecules exhibiting a strong binding affinity to the target are obtained, thehits.
The crude hitlist obtained by these methods needs to be analyzed and compounds need to be
sorted to prioritize subsequent lead selection (Section 18.4). In further steps of drug develop-
ment, top-ranking compounds of the hitlist are refined and a small number of lead structures
exhibiting promising properties are obtained (hit-to-lead) which may be optimized further to
finally becomecandidatesused in clinical trials. The respective drug optimization techniques
are described in Chapter 19 of this volume.

18.1.3 Compound collections

The number of all possible drug-sized molecules, the virtual chemistry space, is huge. A
systematic exploration of a small part of this space with molecules up to eleven heavy atoms
was recently performed [57]. After exclusion of unsuitablechemicals with many small rings,
over 13 million different compounds remained. A typical drug molecule can be up to twice
as large as the compounds investigated in this study (average mass of 340 Da [55], about 24
heavy atoms). Estimates of the number of ’drug-like’ molecules accessible to current synthesis
procedures are on the order of

����
[18] to

�����
[200]. These numbers indicate, that even

when combining all compounds ever synthesized (estimated
���

molecules), we cover an
almost negligible fraction of the virtual chemical space.

Compounds for screening can be obtained from databases of known structures, from
combinatorial libraries, or fromde novodesign programs. Due to problems with synthe-
sizability, often only known structures are considered. Typical databases with organic lab-
oratory compounds (e.g. MDL Available Chemicals Directory(ACD, http://www.mdli.com/
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products/experiment/availablechemdir/) or SPRESI (http://www.spresi.com/)) are not suit-
able sources for screening compounds due to the non-druglike properties of most of the en-
tries. (In fact, these databases are used as references for non-drugs, see below). Much better
sources are collections available in-house to pharmaceutical companies or offered by screen-
ing compound vendors, containing historical compounds andcombinatorial libraries. Within
the MDL Screening Compounds Directory (SCD, http://www.mdli.com/products/experiment/
screeningcompounds/) database, over 3 million screening compounds are listed together with
supplier information. Unfortunately, all these compound databases need extensive cleanup to
be suitable for drug screening. Very recently, ZINC, a curated large screening library of pur-
chasable compounds has become available [85], in which all necessary preprocessing steps
(Section 18.2.1) have been performed already.

Reference data of pharmaceutical compounds at various stages of development can be
taken from the MDL Drug Data Report (MDDR, http://www.mdli.com/products/knowledge/
drug datareport/), the World Drug Index (WDI, http://scientific.thomson.com/products/wdi/),
or the MDL Comprehensive Medicinal Chemistry (CMC, http://www.mdli.com/products/
knowledge/medicinalchem) database.

18.2 Filtering and preparation of ligands

The data from screening compound collections are usually not suitable for virtual screening
off the shelf. On the one hand, this is due to incomplete information (often missing 3D co-
ordinates, stereochemistry, hydrogen atoms). On the otherhand, chemical libraries tend to
contain a number of undesired compounds and a lot of duplicates. Thus, before a library of
compounds can be used in VS, a number of preparatory and filtering steps (Section 18.2.1)
have to be applied. Among these filters, bioavailability (Section 18.2.2) and drug-likeness
(Section 18.2.3) of the compounds are of special relevance.The overall preparation process is
summarized in Figure 18.2.

18.2.1 Library preprocessing

An initial preprocessing step comprises the separation of entries with more than a single
molecule (e.g. containing a charged species and its counterions) into their constituent en-
tries. Next, all non-organic molecules (e.g. chloride ions, water) must be removed. The most
obvious and easiest method is the removal of all molecules without any carbon atom. Alterna-
tively, as almost all drugs contain a bond between carbon anda hetero-atom, another strategy
is to remove molecules without any of these bonds.

Then the library is subjected to a functional group filter. Here substructure search is per-
formed in order to identify and discard compounds with knownundesired groups in the library.
This technique can be applied to reactive functional groups[170], groups unlikely to be leads,
promiscuous binders, and even functional groups classifiedas toxic [201]. Strategic pooling,
a technique proposed by Hannet al.[75], can also be applied by using functional group filters.
For instance, if the ligand is required to contain an acidic group, only compounds with this
function are integrated into the final library.
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Figure 18.2: Example preprocessing workflow for chemical libraries (seetext for details).

A common problem of HTS and VS consists of small molecules binding to many differ-
ent proteins, resulting in false positive results (so called ’frequent hitters’ or ’promiscuous
binders’) [135, 172]. By statistical methods based on substructures, Rocheet al. [172] devel-
oped a scoring scheme based on a neural network to classify molecules as frequent hitters.
Merkwirth et al. [141] use an ensemble model for this classification. Molecules covalently
binding to proteins can be filtered out using reactive functional group filters (see above).

Finding duplicates in screening libraries significantly reduces the number of compounds
to be tested. A one-by-one subgraph matching of connection tables for all pairs of compounds
is too expensive for collections with more than a few thousand molecules. Instead, a represen-
tation of the molecular structure which can be compared easily is generated. Often chemical
hash codes like those provided by Ihlenfeldt and Gasteiger [84] are used. Here, the molecular
topology is encoded in a single number, the hash value. If twohash values are different, the
molecules are different. If the hash values are identical, the two compounds are most likely
identical. Only in extremely rare cases, two different compounds exhibit the same hash code.
To be sure, a substructure matching has to be performed if twoidentical hash codes have been
found. An alternative to hash codes is the generation of a unique string for every molecule.
This can be done by using the SMILES representation (Simplified Molecular Input Line Entry
System) after Weininger [210]. An enhancement of the SMILESrepresentation can gener-
ate unique strings [209] by using an atom ordering scheme, which is suitable for molecular
comparison.

The methods described so far need the two-dimensional representation of the molecule
in form of a connection table only. If three-dimensional information is needed further in
the screening pipeline then, as a next step, this information must be generated from either
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two-dimensional coordinates (e.g. most Structure Data Files, SDF) or connection tables (e.g.
structures in one-dimensional string representations, like SMILES or Sybyl Line Notation,
SLN). Due to the still large amount of data this can only be done efficiently by structure gen-
eration programs. These convert the connection table into asingle low-energy conformation.
The two most widely applied tools of this kind are CONCORD [157] and CORINA [176].
CONCORD uses rule sets based on literature values of bond lengths and torsion angles to
construct the molecule. Based on these values, acyclic parts of the molecule are constructed.
For cyclic parts special rules pertaining to ring geometries are applied. Ring systems are ob-
tained by merging conformations of the individual rings andoptimizing the geometry such as
to minimize the strain. CORINA works similarly, but includes more literature data and has a
backtracking algorithm for generation of strained ring systems.

While the three-dimensional structure is generated, information on the stereochemistry of
the compound has to be included. The often incomplete annotation of the stereocenters is
a pervasive problem with current compound collections. Each stereocenter offers a choice
of two stereoisomers (for the relevant cases asymmetrical carbons and cis-trans-isomerism).
Which of these alternatives are explored is up to the user. Anexhaustive generation of all
possible stereoisomers of the compounds is one extreme, discarding the molecule due to in-
complete information is the other. Typically, only a small number of stereoisomers are gen-
erated at this stage. Some programs even allow to handle stereocenters as variable during the
calculation [62].

Next step in preprocessing, although often combined with structure generation, is the ad-
dition of missing hydrogens. This includes the assignment of a protonation state and an as-
sessment of the tautomerism of the molecule. Depending on the application, either the most
likely or all protonation states/tautomers are generated.A typical approach for assignment
is the use of empirical rules. For example, carbonic acids are usually kept deprotonated and
primary aliphatic amines are protonated. A program for generation of protonated forms is
LigPrep from Schrödinger LLC (http://www.schroedinger.com/). Tautomers can be gener-
ated with TAUTOMER (http://www.mol-net.de/software/tautomer/) by Molecular Networks
GmbH.

Depending on the methods used for screening, often the conformational space of a mol-
ecule needs to be explored by a VS program. While the structure generation programs (see
above) produce a single structure only, the conformationalanalysis programs produce a set
of alternative low-energy conformations for a molecule. Leach has reviewed the available
techniques [119] and several available programs have been compared [20], whether they pre-
dict bioactive conformations correctly. The OMEGA program(http://www.eyesopen.com/
products/applications/omega.html)by OpenEye, using a rule-based algorithm, currently seems
to provide the best tradeoff between accuracy and speed [19,20].

During all the steps of the screening procedure the identityof the molecules (e.g. their
registry numbers, order information) has to be maintained and stored, typically in a relational
database system.

18.2.2 Bioavailability

It is highly desirable for a drug to be administered by oral ingestion in order to be easily
applicable by the patient. Thus, the molecule must have reasonable aqueous solubility and
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has to pass the intestinal membrane in order to enter blood circulation. Bioavailability —
a transport phenomenon — is often confused with drug-likeness. Here we keep these two
entirely different subjects separate. We discuss bioavailability in this section and drug-likeness
in the next Section 18.2.3.

By analysis of molecules that have entered clinical trials (and thus, are bioavailable), Lip-
inski and coworkers established the ’rule of five’, which provides a simple heuristic rule for
oral bioavailability [128]. It is likely that a molecule exhibits poor absorption, if two or more
of the following criteria are fulfilled:

� Number of hydrogen bond donors (counted as number of O—H and N—H groups)� �

� Number of bond acceptors (counted as number of any O or N atom)� ��

� Molecular weight� ���

� Calculated logP� � (if ClogP is used, see below)

Here, logP represents the logarithm base 10 of the octanol-water partitioning coefficient, a
property which can easily be calculated by property estimation techniques [143]. Among the
estimation techniques for logP, ClogP introduced by Hanschand Leo [76] and available from
BioByte Corp. (http://www.biobyte.com/) is widely accepted. The idea of simple property-
based rules as rejection criteria for bioavailability was extended by Ghoseet al. [64]. Here,
ranges were calculated for logP, molar refractivity, molecular weight, and number of atoms.

After development of fast estimation methods for the polar surface area (PSA) by Clark
[31] and Ertlet al. [50], rejection of molecules with a PSA�

���
Å was proposed as the only

rejection criterion. Veberet al. [193] analyzed a database with drug candidates. They classi-
fied compounds as bioavailable, if the PSA was less than 140Å and the number of rotatable
bonds less than 12. More detail on bioavailability and, moregenerally, on ADME properties
(absorption, dissipation, metabolism, excretion) is provided by Baringhaus and Matter in the
subsequent Chapter 19 of this volume.

18.2.3 Drug-likeness

With the filtering methods described above, the knowledge ofmedicinal chemists on whether
a compound might be a good drug or not, is not taken into account. It is desirable that the
compounds in a screening library have the typical properties of drugs. Thus, a binary classi-
fication, whether a compound is ’drug-like’ or not must be performed on all compounds. The
challenge regarding this problem is that ’drug-likeness’ is a property which is not easily eval-
uated and not related in a simple fashion to other chemical, physical, or biological properties.
In order to solve the decision problem, the knowledge of medicinal chemists for assessment of
’drug-likeness’ is used. The implicit knowledge on drug-likeness is inherent in the databases
of known drugs and can be extracted by comparison with databases of non-drugs [5, 65, 175].

Implicit information on drugs is contained in the MDDR, WDI,and CMC databases (see
Section 18.1.3). Within these databases, not all entries are existing drugs, but the majority
of entries were designed by medicinal chemists with the intention of developing a drug. In
contrast, databases like the ACD or SPRESI of general organic compounds are supposed to
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contain very few drugs. A statistical classification technique can be used to extract the knowl-
edge from the databases to decide whether a given compound isdrug or non-drug.

Gillet and Bradshaw [65] used structural features (including number of hydrogen-bond
donors and acceptors, number of rotatable bonds, number of aromatic rings, molecular weight)
and a shape descriptor. Compounds of the WDI and SPRESI databases were analyzed with a
genetic algorithm to derive a weighting scheme, which calculates the drug-likeness of a given
compound. Ajayet al.[5] used MDL keys (see Section 18.3.2), in addition. They applied both
decision trees and an artificial neural network (ANN) for classification, trained on the MDDR
and ACD databases. Sadowski and Kubinyi [175] also used a feed-forward neural network.
The classification scheme was trained on atom type descriptors of compounds from the WDI
and ACD databases.

Support vector machines (SVM) can also be applied to the drug/non-drug classification
problem. In a comparison of SVM to neural networks, Byvatovet al. could obtain slightly
more accurate classifications on the same data as used in [175]. Overall, the predictive power
of the methods presented so far reaches a typical 80 % correctly classified test molecules.
Recently, Müller and coworkers [144] were able to reduce the error rate to 7 % in a blind-test
using SVMs. This performance was achieved by careful model selection after comparison
of several learning methods. In summary, the results show that accurate drug-likeness filters
can be constructed which use the knowledge on drug-likenessobtained by medicinal chemists
over decades.

The technique presented can be tailored to specific screening problems. Thus, not the phe-
nomenon of drug-likeness is assessed but the likelihood of adrug to belong to a certain class
of compounds. Ajayet al. [4] used neural networks to classify ligands regarding their CNS
activity while Manallacket al. [130] used them to screen for candidates binding to kinase
and G protein-coupled receptors. More recently, Briem and Günter [23] presented a SVM
method also for ’kinase-inhibitor likeness’. All these target-specific drug-likeness classifica-
tion techniques have a prediction accuracy of about 80 %. Thus, if there is a sufficient number
(several hundred) of compounds of a certain class availableas training set, machine learning
techniques can be trained to predict the likeness to be a certain inhibitor with high accuracy.

18.2.4 Molecular diversity

Compound collections, especially those in pharmaceuticalcompanies, contain many series
of analogous compounds. It is desirable to screen for only a subset of ’maximally diverse’
compounds, reducing redundant structural information. This diverse subset is hoped to cover
the range of chemical structures and physical properties toa sufficient extent. Unfortunately,
there is no generally accepted single definition of similarity or dissimilarity for this purpose
[114]. Thus, selecting a set of diverse compounds can be performed in a number of ways.
These differ not only in the method but also in the selection criteria used. These techniques
have been reviewed on several occasions [1, 39, 126].

Among the methods for selecting diverse compounds, clustering methods can be consid-
ered as the standard technique. For clustering, descriptors (see Section 18.3.1) are calculated
for each compound. Then a cluster analysis algorithm divides a group of compounds into
clusters. Compounds within a cluster are similar and compounds from different clusters are
dissimilar. After clustering of a library, a representative molecule is taken from each cluster
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to belong to the diverse compound collection. For clustering of chemical libraries, typically
methods generating disjoint clusters are used in which eachmolecule belongs to a single clus-
ter only. Both, hierarchical [9, 211] and nonhierarchical [213] methods, have been applied.
Evaluations of different clustering algorithms demonstrate the better performance of hierar-
chical clustering methods for several test cases [12, 24, 46]. Naı̈ve implementations of hierar-
chical clustering need an initial� �� similarity matrix and have space and time complexities
of � �� � � and� �� � �, respectively. By use of the minimum variance method (also called
Ward’s method) [206] which aims on minimizing the total variance of a cluster, however, a
computationally more efficient implementation is possible[146], having space and time com-
plexities of� �� � and� �� � �, respectively. For large numbers of compounds (� � ���

)
hierarchical clustering is not applicable. Instead non-hierarchical clustering (e.g.� -means
clustering [139]) is used. For these algorithms the time complexity for � generated clusters is
� �� � � per iteration for efficient implementations. For descriptions of clustering algorithms,
see also Chapters 25 and 28.

A different approach on selecting diverse compounds is provided by partitioning methods.
These use a low-dimensional property space, each property represented by a continuous num-
ber that is categorized into a discrete set of value ranges, forming a set of cells in property
space [37, 125]. Compounds from a library are then partitioned into these pre-computed cells.
Two special kinds of descriptors, BCUT descriptors by Pearlman and Smith [155] and phar-
macophore keys by Davies [38] can be used for partitioning chemical property space. BCUT
comprises molecular descriptors based on the eigenvalues of a matrix representation of the
molecules. These descriptors are designed specifically to define a low-dimensional property
space. For the description of the properties, axes are chosen that span property space in such a
way that the compounds exhibit maximal variance along the axes and compounds are evenly
distributed in property space [155, 156]

Davies [38] developed ChemDiverse, a program using pharmacophore keys for the selec-
tion of diverse compound sets. The basic idea is to calculatethe pharmacophore key for the
first molecule, add the molecule to the diverse compound selection, and store the pharma-
cophore in a list. Subsequently, for the next molecule in thelibrary, the pharmacophore keys
are calculated. If this molecule has a pharmacophore key notyet represented in the list, the
molecule is added to the selection.

A completely different attempt to find diverse compounds is by dissimilarity-based com-
pound selection. Among them, maxmin by Lajiness [118] is most used. The maxmin algo-
rithm first selects a compound randomly and adds it to the selection. Iteratively, the compound
most dissimilar to the already selected set is identified andadded to the selection, until a de-
sired number of compounds has been found. A stochastic variant, OptiSim has been proposed
by Clark [32]. The initial random compound is compared to a set of � other randomly chosen
compounds. Here, only compounds with a dissimilarity greater than a defined threshold to
the already selected compounds are considered. The most dissimilar compound among the
� compounds is added to the selection. In the next iteration a new set of� candidates is
generated and the process continues.

Taylor [187] proposed a method based on the stepwise elimination of the most similar
molecule from the collection. Initially the similarity matrix between all molecules is calcu-
lated. In a stepwise fashion, the two currently most similarcompounds are identified, as long
as there is more than a single compound left.
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While diversity is desired in initial screening runs for identification of hits, once a lead
is found, compounds should be similar to the lead, i.e. the library should be ’focused’. The
clustering and partitioning methods can be used directly for generation of focused libraries by
switching the selection criteria from one of each kind to allof one kind.

18.3 Ligand-based virtual screening

The methods of ligand-based VS can be divided into two classes. One class of methods
tries to match compounds with identical parts (substructure or pharmacophore) as the active
molecule. For these methods, initially, a number of active molecules are analyzed for a com-
mon substructure or pharmacophore, which is then used for searching exact matches. The
other class tries to find molecules which are ’similar’ to a known active molecule. The under-
lying assumption is that if a molecule is structurally similar, it has similar properties, binds
in a similar binding mode, and exhibits similar activity. This assumption is known as ’similar
property principle’ [40, 87] or ’neighborhood behavior’ [153]. Methods for similarity search
are applicable if only a single active compound is known. In contrast to substructure and
pharmacophore searches, the compounds are not only partitioned with regard to whether they
are matching the query or not. Instead, a complete ranking ofcompounds according to their
similarity scores is obtained. Similarity — like dissimilarity — is not clearly defined [114]
and there are some remarkable exceptions from the similar property principle [114, 131].
Nevertheless, similarity search is the most widely used method in VS and numerous similar-
ity measures have been developed [181]. Figure 18.3 illustrates the most common similarity
search techniques, detailed below.

The actual methods for defining molecular similarity in thiscontext are quite diverse.
Often these methods are classified as one-, two- or three-dimensional, depending on the type
of molecular representation used. In this section we focus on those methods first, which
use the information of a single reference molecule. Then techniques that need a set of input
molecules are discussed. The latter are also often used for the selection of compounds from
hitlists. These techniques are described in Section 18.4.

18.3.1 Descriptor-based similarity measures

Similarity search methods have been used for a long time. Thefield started with counting the
numbers of substructures common to a pair of molecules [27, 212]. This figure provides an
initial effective way of quantifying similarity between molecules with very low computational
cost. Since then, it became a standard retrieval technique for chemical databases.

Methods for calculating quantitative measures for the similarity between a reference mol-
ecule and a set of molecules have been studied in detail (see Willett et al.[211] and references
therein). Common to all these techniques is the requirementto provide a set of attributes of
the molecules being compared and a similarity coefficient, to provide a quantitative numer-
ical measure for similarity between the molecules. The individual importance of different
attributes (e.g. logP, molecular mass, presence of functional groups, ...) has to be accounted
for by definition of a weighting scheme.
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Figure 18.3: Comparison of common ligand-based screening techniques (see text for details). (A) Ex-
ample molecules: Flavonoid molecule (1, test molecule) and a known binder (CGS-9896,2, reference
molecule) for the benzodiazepine site of the GABA� receptor [89]. (B) Bitstring generation and compar-
ison. (C) Generation and comparison of Feature Trees. (D) Comparison by molecular superimposition
using FlexS (center top: molecular interaction surfaces, center bottom: molecular volume represented
by Gaussian functions. (E) Comparison of both molecules to apharmacophore model (center).
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Many different similarity coefficients have been proposed in the literature. Some are mea-
sures of dissimilarity, while others measure similarity directly. In this review, we focus on the
most widely used similarity and distance coefficients only,more details can be found in an-
other review [8]. One of the most frequently used distance measures is the Euclidean distance���������	
 �� between two molecules
 and� described by properties� � ����	 . For continuous
property variables, the distance is defined by

���������	
 �� �
���� 	�
�� �

�� �� � � �� �� � (18.1)

The most often used similarity measure is the Tanimoto coefficient� � �	�� ���
 �� . This coef-
ficient can be interpreted as the fraction of the number of features present in both molecules
divided by the number of features present in at least one of the compounds. For continuous
variables it is defined by

� � �	�� ���
 �� � �	�� � ��� � ��
�	�� � � ���  �	�� � � ��� � �	�� � � �� � �� � (18.2)

Willett et al.[212] assessed the performance of several distance and similarity coefficients
for predicting a measured activity value. The Tanimoto coefficient was performing best and,
since then, it has become the ’standard’ coefficient for chemical similarity comparison. Fur-
thermore, this coefficient was shown to be the most appropriate for similarity searches in 2D
databases [212].

In order to compare two molecules in a quantitative fashion,numerical values of attributes
of the molecules are needed. The term ’molecular descriptor’ subsummarizes all numerical
representations of chemical information about molecules obtained by a defined mathematical
procedure. As example, the molecular descriptor ’molecular weight’ is defined exactly as the
sum of all atomic weights of a molecule

! " �
	#$%& '�
�� � ( � � (18.3)

The number of different chemical descriptors which have been proposed for the field of
quantitative structure-activity relationships (QSAR) and VS is large (several thousands are de-
scribed in detail in the handbook by Todeschini and Consonni[189]) and an extensive discus-
sion is out of the scope of this review. However, some descriptors have become very important
in VS. Among them, logP,

! "
, and molar refractivity are typically used in the preprocess-

ing of libraries (see Section 18.2.2). BCUT descriptors areuseful in diversity analysis (see
Section 18.2.4). A second important class of descriptors are bit strings, used in molecular
similarity search, as detailed in the next Section 18.3.2.

18.3.2 Bit string descriptors

For VS the most popular descriptors are based on binary vectors (also called bit strings). The
idea of using binary vector representations has its origin in chemical database systems. Bit



18.3 Ligand-based virtual screening 13

strings are used in substructure queries to efficiently discard large fractions of the database,
before subsequently a much slower subgraph isomorphism algorithm is used. The length
of the bit strings varies from roughly a hundred bits [218, 219, 220] to several million bits
[136], depending on the type of information stored. The two most widely used approaches are
substructure keys and hashed fingerprints.

Substructure keys (MDL keys available from Elsevier MDL (http://www.mdli.com/) and
BCI structure fingerprints available from Barnard ChemicalInformation Ltd. (http://www.bci.
gb.com/)) represent a description of the substructures present in a molecule (Figure 18.3 (B)).
Within the binary vector, each of the positions is 1, if the corresponding substructure is present
in the molecule, 0 otherwise. All substructures for the bit string are predefined in a fragment
dictionary. Entries can encode the presence of certain atoms (e.g. there is at least one N present
in the molecule) or common functional groups (e.g. ester function). Furthermore, electronic
(e.g. O with double-bond) and structural features (e.g. six-membered ring) are described by
bits.

In hashed fingerprints (Daylight Chemical Information Systems, Inc., http://www.daylight.
com/), substructure information is encoded by an algorithm. All possible paths of atoms and
bonds through the 2D formula of the molecule, up to a certain certain path length are gener-
ated by systematic search, e.g. for a path length of three thepath C=C-N-C. These patterns are
then converted to integer numbers and hashed. The hash code is generated using these num-
bers as seeds for a pseudo-random number generator, resulting in the fingerprint of this path.
The advantage of hashed fingerprints is their applicabilityto any type of structure without the
need of a pre-computed fragment dictionary. A disadvantageis the possibility of the same bit
string being calculated from different atom paths which mayresult in false positives, since
these hash conflicts are not solved. Unity available from Tripos (http://www.tripos.com) uses
a combined approach of substructure keys and hashed fingerprints.

For the use with binary variables, the two similarity coefficients from above can be refor-
mulated. If� denotes the number of bits set (to 1) in molecule
 ,

�
for molecule� , and� the

number of bits set in both molecules, the Euclidean distancebecomes

���������	
 �� � ��  � � �� (18.4)

and the Tanimoto coefficient is given by

� � �	�� ���
 �� � �
�  � � �

� (18.5)

The substantial advantage of linear descriptions for chemical structures is their speed. The
counting of numbers of bits set (�,

�
, �) can be done computationally very fast, resulting in

several hundred thousand molecule comparisons per minute.This allows for fast comparison
of millions of compounds in minutes to hours. A disadvantageof the methods described so
far is that they cannot detect the similarity between two compounds, which behave similar
with respect to binding to the target protein, but are structurally quite different [35]. Thus,
the techniques cannot find a scaffold different from the scaffold of the reference molecule
(scaffold-hopping).
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18.3.3 Feature trees

Feature trees [166] comprise a class of descriptors which are in between the classical linear
descriptors described in Section 18.3.1 and molecular superimposition techniques (Section
18.3.4). In this technique (Figure 18.3 (C)), a molecule is described as a tree, that represents
its overall topology. Nodes of the tree represent fragmentsof the molecule. The nodes are
connected by edges if the fragments are also connected by covalent bonds or sharing of atoms.
A set of features is assigned to each of the nodes, representing physicochemical properties of
the respective fragment. Steric features comprise the number of atoms in the fragment and
the approximated van der Waals volume. Chemical features include the interaction profile of
the fragment, i.e. whether it acts as hydrogen donor or acceptor, is an aromatic ring, and also
represent the hydrophobicity of the fragment.

Similarity between molecules is calculated by matching thetwo corresponding trees, while
preserving their topology. A similarity score quantifies the quality of the fit. The advantage
of feature trees provides a more accurate description of chemical properties than by linear
descriptors. However, the tree matching procedure is slower, due to the higher computational
complexity of the tree comparison. Typically, thousands ofmolecules can be compared per
minute.

18.3.4 Molecular superimposition approaches

Molecular superimposition techniques structurally aligna compound to a reference ligand in
three-dimensional space. During the alignment matching parts of both molecules are placed
on top of each other. The large variety of algorithms for molecular superimposition has been
reviewed by Lemmenet al.[123]. The application of superposition techniques for VS has also
been reported [121].

In general, the molecular superimposition can be achieved in two ways: Either a field-
based approach is used, in which properties of the moleculesare projected onto a common
surface or into three-space. The other method aligns pairs of atoms directly. Early approaches
achieved this goal by rigid-body superimposition. Newer programs can handle one or both
molecules as flexible on the fly. Nevertheless, the rigid-body techniques are much faster and
are thus often preferred. An intermediate technique is to address molecular flexibility by
considering a set of alternative conformations of the molecule.

A rigid-body superimposition program reads a reference ligand and a test ligand, then per-
forms an optimization of the position and orientation of thetest ligand in space. Early attempts
using combinatorial approaches to enumerate efficiently possible matches (correspondences)
of chemical features of the two molecules [91, 133] are too compute-time intensive. With the
program SEAL (Steric and Electrostatic ALignment) [92] andlater enhancements [98], for
the first time, Gaussian functions were used for describing the physicochemical properties of
the molecules and a new algorithm was applied to tackle the rigid superpositioning problem
efficiently. The description of chemical features by Gaussian functions has several advantages
[68]. First, a Fourier transform of a Gaussian is again a Gaussian. Second, there is no bound-
ary which helps in the initial steps of alignment. Furthermore, derivatives can be calculated
easily (even symbolically), and finally, the overlap between two Gaussians increases when
their maxima approach each other. An improvement of the search algorithm was proposed by
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Lemmenet al. [120] in their program RigFit. The optimization is split into two independent
optimizations for rotation and translation. Thus, one six-dimensional search is separated into
a sequence of two three-dimensional searches.

Current state of the art are programs for flexible superpositioning of two molecules. Sheri-
danet al. [180] uses distance geometry for superposition, while Itaiet al. [86] proposed a
technique, in which all possible matchings between pharmacophoric points are evaluated in
a combinatorial matching. For both techniques, still the definition of the pharmacophore is
needed as prerequisite. The combined Monte-Carlo and energy-minimization based tech-
nique by McMartin and Bohacek [137] also needs manual intervention. The program GASP
[88] was the first method available that was able to handle thestructural flexibility of both
molecules involved and was not constrained by predefined relationships between functional
groups assumed to be similar. GASP is based on a genetic algorithm which mimics the pro-
cess of evolution. The conformations of each molecule and the correspondences between
intramolecular features are coded via so-called chromosomes. In order to modify the super-
imposition, the chromosomes are subjected to the operations of mutation (local changes) and
crossover (splitting and merging of two chromosomes). A population of chromosomes is re-
peatedly subjected to these modifications and then evaluated with a fitness function. Only the
fittest chromosomes survive to the next round. The fitness function used in the selection pro-
cess of each superposition is calculated by volume overlay,intermolecular matching energy
and the conformational energy.

A different technique for superposition, FlexS, uses incremental construction [122]. Here
the reference molecule is handled as rigid, the test molecule is flexible. The test molecule is
partitioned into fragments which are connected by rotatable bonds. A number of relatively
rigid fragments is selected and aligned to the reference molecule. Then the next fragment
is attached to the previously placed fragment in all allowedtorsion angles. The list of ad-
missible torsion angles is derived by statistical analysis[100] of the Cambridge Structural
Database (CSD) [6]. All generated placements are scored by paired intermolecular interac-
tions and overlap, the latter being described by Gaussian functions (see Figure 18.3 (D)). The
best partial solutions are subjected to the next incremental construction cycle until the com-
plete test molecule is build up. The mean computing time is inthe order of 30 seconds per
superpositioning for typical test cases.

Krämeret al. [107] developed fFLASH, using a fragmentation-reassemblyapproach. The
tool is based on earlier work on FLASHFLOOD [164]. fFLASH describes the query molecule
as rigid, the test molecules are handled flexibly. All test molecules are partitioned into frag-
ments by severing rotatable bonds, expanded to a set of conformations, and all conformers
stored in a database. Pairs of adjacent fragments are joinedand a set of conformations of the
fragment-pair is generated by varying the dihedral angle atthe connecting bond. Molecular
interaction features are then calculated and stored in a lookup table. By use of a clique detec-
tion algorithm, patterns of features of fragment-pairs of the test molecule are geometrically
matched on the reference molecule. These matches are subsequently joined, based on the
pairwise compatibility of two matches, by a graph-algorithm.
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18.3.5 Pharmacophore searches

A pharmacophore is usually defined as a set of molecular features and their rigid spatial ar-
rangement, which is necessary for ligand-receptor binding[73]. A pharmacophore is typically
composed by three to four pharmacophoric centers and their respective distances (Figure 18.3
(E)). Pharmacophores are applied in three-dimensional database searches after they have been
determined from a set of active ligands. In VS, pharmacophores can also be used as constraints
in structure-based screening. Pharmacophores can also actas three-dimensional descriptors.
Often pharmacophores are encoded in the form of bitstrings,known as pharmacophore finger-
prints, which are directly applicable for screening (see Section 18.3.2).

In ligand-based VS, the true pharmacophore is unknown and must be determined first.
Pharmacophore perception is closely related to molecular superpositioning, for example, the
program GASP [88] can perform both tasks. Nevertheless, since the programs of both groups
are tailored to their specific research areas they are described separately. For automatic deter-
mination of a pharmacophore hypothesis a set of active ligands as training set is needed. The
pharmacophore perception is then performed in a number of steps: First, three-dimensional
structures of the molecules must be generated with one of themethods described in Section
18.2.1. Then the molecules are analyzed in order to identifyatoms that can interact with a
protein in a characteristic way. Commonly these pharmacophoric features are acidic and basic
groups, hydrogen acceptor and donor sites, aromatic, and hydrophobic groups. In the next
step, conformations of the molecules are passed to the pharmacophore perception algorithm.
Here, conformations of the molecules are compared in order to identify pharmacophoric fea-
tures common to all molecules. A number of programs have beendeveloped for pharma-
cophore identification [73], among them the commercially available tools Catalyst/HipHop
[33], DISCO [132], and GASP [88]. For a recent review and a comparison of these three,
see Patelet al. [152]. These programs differ with respect to how the conformations are han-
dled and how the molecules are aligned and compared. GASP uses a genetic algorithm (see
Section 18.3.4) to describe the molecules as flexible. DISCOuses a set of low-energy con-
formations which are kept rigid throughout the calculationand a clique-detection algorithm is
used for rigid-body alignment. Catalyst/HipHop also uses aset of rigid low-energy conforma-
tions of the molecules but then performs a pruned exhaustivesearch to identify configurations
common to all molecules. Once the pharmacophore is identified, it can be used to screen a
three-dimensional database.

An extension of the ligand-based pharmacophores describedso far, is the use of structural
information of the receptor for pharmacophore generation.Two recent examples of these
structure-based pharmacophores are the works of Wolber andLanger [214] and Griffithet al.
[72].

18.3.6 Quantitative structure-activity relationships (QSAR)

The structure and the physicochemical properties of a molecule can be used to model its
biological activity. The mathematical description of thisrelationship in a quantitative way is
the aim of QSAR techniques. In order to model structure-activity relationships, first, for each
compound in the library a number of molecular descriptors have to be calculated. In a second
step, a quantitative relationships between these descriptors and the activity is derived. This
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section covers only some selected techniques from the field of QSAR which has grown in
terms of using more and more sophisticated descriptors and also more sophisticated statistical
tools for finding correlations between structure and activity.

The classical technique is Hansch analysis which correlates activity with physicochemical
properties by use of regression analysis. Hanschet al. [77] described the dependency of
the concentration� needed for a certain biological response in terms of the hydrophobicity
(expressed by the logP value) and electronic effects (usingthe Hammett constant� ) by the
equation

��� �

�
� � � � ����  � � � �  � � � (18.6)

Here, the� � are the coefficients to be fitted by the regression. Using thistype of QSAR anal-
ysis, today, several thousand successful applications have been reported and a database of
QSAR equations is electronically available (http://www.cqsar.com/medchem/chem/qsar-db/).
The descriptors applied include steric, electronic, and hydrophobic effects as well as indicator
variables. These values are obtained either by computer prediction techniques or experimen-
tally. Due to the large number of descriptors available the dependency between them has to
be studied in order to find the relevant ones. This ”feature selection” is usually done based
on Principal Components Analysis (PCA) [61] or its extension Partial Least Squares Analysis
(PLS) [82].

An extension of the classic approach was the introduction ofthree-dimensional informa-
tion of the ligands to reflect the geometry of their binding toreceptors, including their chi-
rality. The first of this 3D-QSAR techniques was the Comparative Molecular Field Analy-
sis (CoMFA) [34] which turned out to be very successful (manyexamples can be found in
[113, 111, 112]). In CoMFA a set of molecules is selected which have an identical binding
mode, i.e., they bind to the same site in the same relative geometry. To derive the CoMFA
model, for all training set molecules, first, partial charges are assigned and low-energy confor-
mations are generated. Then the molecules are aligned by useof a pharmacophore hypothesis
and positioned inside a 3D grid. For each grid point and for each molecule separately, ’field’
values (interaction energies) are calculated for charged and uncharged probe atoms. Finally,
PLS analysis is used to correlate the fields with biological activity data. The result of this
analysis is typically represented as a set of contour maps showing favorable and unfavor-
able regions for certain substituents. Several techniqueshave been proposed to obtain better
fields. By calculating fields with GRID [71] or HINT [94] more different probes can be used
which allows modelling of a wider range of interactions. By replacing CoMFA potentials with
SEAL (see Section 18.3.4) similarity fields (Comparative Molecular Similarity Indices Anal-
ysis, CoMSIA [99]) the results become more stable. A frequent problem for PLS can be the
high number of noise variables not contributing to the description. With GOLPE (Generating
Optimal Linear PLS Estimations) [10] the meaningful variables can be selected and the pre-
dictive ability of the model is checked by cross-validation. A cause of error for CoMFA, CoM-
SIA, GRID/GOLPE and related techniques is the mutual alignment of all molecules. There
are methods available that retain the 3D information but areindependent of the alignment.
Examples for these techniques are WHIM (Weighted Holistic Invariant Molecular indices)
[188], which uses the moments of atomic properties as descriptors, and the related technique
MS-WHIM [21], which uses molecular surface points instead of the atoms as descriptors.
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In the classical 3D-QSAR methods described above, only information on the geometry of
the ligands is used. In 4D techniques multiple conformations or orientations of the ligands are
considered simultaneously. It is even possible to include information on the protein structure
to which the ligands are bound in the QSAR model. The program Quasar by Vedaniet al.[195]
is a method which constructs a receptor-surface model and bridges between 3D-QSAR and
receptor modeling, taking induced fit into account. Currently, multidimensional QSAR studies
are extended up to six dimensions to allow for the simultaneous consideration of different
solvation models [194].

18.3.7 Other techniques

The interaction of a ligand with a target molecule can be described in terms of the respec-
tive molecular surfaces, that have to be complementary withrespect to both physicochemical
properties and shape. Finding optimal surface complementarity is the main aim of docking
procedures (cf. Chapter 16). Thus, the comparison of different ligands in terms of their molec-
ular surfaces and the properties mapped to them is a valuablesimilarity criterion.

Among the many techniques of molecular surface comparison,we focus on the recent
graph-based method SURFCOMP of Hofbaueret al.[79] and the gnomonic projection method
[17] as examples. The comparison of two surfaces, each described by a point set in three-space
is not an easy task. The problem can only be solved efficientlyif the surface model is sim-
plified. In SUFRCOMP, first a representation of the surface via overlapping circular patches
is calculated. Then the centers of these patches, representing critical points, are reduced in
number using a number of filters and matched via maximal common subgraph comparison.

Blaneyet al. [17] use gnomonic projection of the molecular surface properties onto equi-
spaced points on the surface of an enclosing sphere. To do so,the points in space at which
vectors from the sphere’s surface to the ’center’ of the molecule cut the molecular surface
are calculated. The physicochemical properties on the cutpoint farthest from the ’center’ are
then projected onto the sphere. The comparison of the projections of two molecules is then
performed after mapping of the property values on two dimensions.

A different type of measuring similarity between moleculesis the use of ’virtual affinity
fingerprints’ [124, 208]. In the Flexsim-X method by Lessel and Briem [124] ligands are
flexibly docked into a carefully selected reference set of protein binding sites using the FlexX
docking program [165]. The highest-ranking solution of each docking run is selected. The
virtual affinity fingerprint of a ligand is then defined as the vector of docking scores obtained
for the different binding pockets. Molecules are compared by the Euclidean distance between
their affinity fingerprints. The technique was shown to detect molecules with similar biological
affinity without prior knowledge of the target protein structure. An extension of this work to
calculate similarities of functional groups is Flexsim-R [208].

18.4 Post-processing of hitlists

HTS or VS runs of a compound collection with up to millions of entries results in a huge
volume of data. The obtained list of hits is rather crude and needs substantial clean-up. There
are a number of computational methods for the post-processing and analysis of screening
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data. First, the output is simplified by removing data pointswhere the screening failed (e.g.
no docking solution, failure during experiment). Here, also data not needed in post-processing
(e.g. intermediate results, log files) are discarded. Second, the most promising hits have to be
selected mostly on the basis of their rank in the hitlists or by criteria based on the scores, in
order to reduce the dataset to manageable size. To identify leads among the screening data is
a challenging problem, addressed by a number of different computational methods. The often
concealed information can be extracted by data mining procedures (Section 18.4.1). A general
problem of screening data consists of false positive results. Especially for results of structure-
based VS runs, some techniques have been developed to identify and discard false positives
(Section 18.4.2). Whenever a combination of different techniques is used in screening, each
technique result in a different hitlist. Here, consensus techniques help in picking hits (Section
18.4.3). Nevertheless, the most important method is still the visual inspection of the results
by an experienced medicinal chemist, assisted by visualization tools (Section 18.4.4).

18.4.1 Data mining

A common approach for mining hitlists is the search for families with similar chemical struc-
ture among the active compounds. Here active compounds (actives) are those with high affin-
ity, high scores, or high similarity after screening. Chemical families can be identified by
grouping the compounds with similar chemical structure. A chemical family is characterized
by a common scaffold. Substructure search among the resultscan be applied to identify these
families. Robertset al.developed LeadScope [171], a structural classification technique. The
method classifies compounds into a collection of predefined chemical families. The prede-
fined families are arranged hierarchically, starting with amajor structural class on top, which
is subdivided further. For example, a 3-methoxy-pyridine derivative, is found in the pyridine
� pyridine, 3-R� pyridine, 3-alkoxy class of the hierarchy. For each structural class, activity
data and frequency in the data set is depicted in an intuitivebar plot.

As an alternative, techniques for similarity search (Section 18.3) can be applied to identify
families. In this case, the families are defined by a high degree of similarity. For grouping
the families, often clustering techniques are used (as described in Section 18.2.4). Due to the
importance of hitlist mining, a number of dedicated clustering techniques have been developed
[49, 185].

Another approach to data mining using classification techniques is recursive partitioning
(RP) [173, 221]. RP is a nonparametric classification technique (as opposed to the many
parameters in QSAR models), in which the whole set of compounds is recursively classified
into disjoint subsets using statistically determined rules. In this manner, a tree is constructed,
in which some terminal nodes (leaves) are enriched with actives, while other leaves contain
mostly inactive molecules. If the path from a leaf with actives is traced back to the root node,
the molecular descriptors used for partitioning at the inner nodes can be used to characterize
or to search for actives.

Nicolaouet al. developed a classification method using a phylogenetic-like tree (PGLT)
[147]. This tree is constructed using a combination of techniques. Each node has bins for
active and inactive compounds. First, all active moleculesare stored in the active bin of the
tree’s root node. Then, in an iterative fashion, a clustering of the molecules of the current
leaf is performed, using a criterion based on chemical descriptors. In a next step, cluster
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level selection is performed to select a set of ’natural’ clusters. Each of the natural clusters
is then subjected to a maximum common subgraph (MCS) search.Common substructures
are evaluated by a set of rules to evaluate each and to discardall those, not providing new
knowledge. The rules, for example, discard substructures already found in other nodes or
those identical or subsets of the parent node. Then, for eachof the remaining substructures,
all molecules from the parent node containing the respective MCS are added to a newly created
tree node. Finally, a node is selected at which the iterationproceeds. After the actives have
been used to construct the tree, a post-processing procedure is performed in order to prune
the tree and reduce it to contain only nodes with structurally homogeneous families. This is
done by adding inactive compounds to the inactive bins of thePGLT using the substructure
rules derived with the actives. For each node, the similarity between actives and inactives is
calculated and nodes with dissimilarities are eliminated.The technique described has been
implemented in the program ClassPharmer (Bioreason S.A.R.L, http://www.bioreason.com/).

18.4.2 Analysis of the protein-ligand interface

A particularly interesting type of strategy, which can be applied to results of structure-based
screening, is the analysis of structural properties of the bound protein-ligand complex. Al-
though this method also belongs to docking techniques (see Chapter 16), we describe it here as
a representative example for an important class of post-processing techniques. Current scoring
functions favor the formation of many protein-ligand hydrogen bonds and salt bridges, even if
the structures exhibit only limited steric complementarity overall due to holes along the inter-
face or larger parts of the ligand being exposed to the solvent. Stahl and Böhm [184] propose
a post-processing procedure of docking results. For a set ofgenerated docking poses, first, all
poses with close contacts between polar atoms that do not take part in hydrogen bonds are dis-
carded. Then the fraction of ligand volume located inside the cavity is calculated. Poses with
less than average buried volume are discarded. The size of lipophilic cavities at the protein-
ligand interface also acts as filter criterion: Poses exceeding the minimum value by more than
25 Å are discarded. Finally, the solvent-accessible surface of nonpolar parts of the ligand is
calculated and used for rescoring.

Giordanettoet al. [67] also propose the use of solvent-accessible surface areas. These
authors perform a classification of all receptor and ligand atoms into classes, depending on
the physicochemical properties hydrophilicity, charge, and hybridization. Then descriptors are
calculated that describe the energetic cost of burying the atoms. In addition, conformational
entropy differences between holo and apo form of the proteinare calculated. Here, an amino
acid-based conformational entropy contribution of the protein after Murphy and Freire [145] to
the binding affinity is used. By use of these techniques, affinity predictions could be improved
on the cost of less accurate binding mode prediction.

Results from docking studies can also be analyzed by structural interaction fingerprints as
proposed by Denget al. [41]. These interaction fingerprints are a translation of the structural
information of a protein-ligand complex into a binary vector. The technique can be applied
for identification and clustering of similar docking poses.
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18.4.3 Consensus techniques

The combination of several different computational methods is another approach to reducing
the number of false positives and prioritizing molecules for further study. Some of these meth-
ods are only applicable to structure-based techniques, while some use mixtures of different
computational methods, including ligand-based techniques. Prototype of the structure-based
methods in this field is consensus scoring [28]. Here, one docking program is used to gener-
ate a docking pose. Then, the highest ranking structure is reevaluated with different scoring
functions. If the compound is not among the top-scoring compounds for all scoring functions
applied it is discarded. In a computer experiment by Wang andWang [205] it has been shown
that hit rates improve significantly after consensus scoring if three or four scoring functions
are used.

Methods using not only different scoring functions but different docking techniques go a
step further [154]. In the ConsDock approach, docking is performed with three different dock-
ing programs and a set of 30 top ranking poses is stored obtained with each of them. Then
a hierarchical clustering is performed on each set and the highest-ranking pose within each
cluster is defined as its ’leader’. Consensus pairs are defined, where two of the docking pro-
gram result in similar leaders. Each of these pairs is then described by its mean and clustered
again into classes. Finally, the mean pose of the clusters issubjected to re-ranking according
to the number of entries in each class.

The use of entirely different computational techniques forinvestigation of hitlists has been
proposed by some groups. Klon and coworkers [102, 103] use a combination of docking and
machine learning. First, docking of a library is performed with three different docking pro-
grams. Then a näive Bayesian classifier is trained on the docking scores of the top-scoring
compounds, which are labeled as ’good’, if their score is better than a threshold. The com-
pounds themselves are described by an extended-connectivity fingerprint as structural descrip-
tor (Pipeline Pilot program available from SciTegic, http://www.scitegic.com/). Application
of the Bayesian classifier for re-ranking the hitlists improved the enrichment in most of the
test cases, without anya priory knowledge of the activity of the compounds.

Especially in docking, the high-dimensional search space can be explored a bit further to
re-rank hitlists. On the one hand, a multi-conformer description of the protein can be used
[199]. On the other hand, not only the top-ranking pose but several poses can be used for
calculating the score [104].

Ginn et al. [66] proposed the use of data fusion for combining molecularsimilarity mea-
sures. In this procedure, a similarity search is performed with at least two different similarity
measures�. The rank positions� � of each individual structure in the hit lists are then combined
to a new score. With the fusion rule�	�� � � � the performance is at least as good as the best
individual measure.

18.4.4 Visualization

For the simultaneous display of screening-result data in several dimensions, a number of tech-
niques are available [3, 63, 116]. The techniques have been implemented in several tools for
display of screening data using highly sophisticated graphical data representations for visual
data mining (DecisionSite (Spotfire, Inc., http://www.spotfire.com), ClassPharmer (Biorea-
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son S.A.R.L, http://www.bioreason.com/), LeadNavigator(LION Bioscience AG, http://www.
lionbioscience.com/)). Results are plotted in multiple dimensions, combining data from differ-
ent databases. The data points in the plots are linked to the corresponding chemical structures
and vice versa. This enables the medicinal chemists to identify patterns within the results. A
technique for visualization of the multidimensional screening data is the non-linear mapping
of the data to a lower-dimensional space with just 2 or 3 dimension. The usual techniques for
non-linear mapping is multidimensional scaling [110]. This technique aims at keeping points
close together in low-dimensional space if they are also close together in the original data-
space. With recent enhancements [2, 216], multidimensional scaling is applicable to large
screening data sets. Despite all efforts in visualization techniques, it has been pointed out that
visual data mining tools are not applicable to extremely large and complex data sets [147].
Furthermore, due to their ’interactive’ approach, these tools cannot readily be integrated into
fully-automated screening procedures.

18.5 Critical evaluation of structure-based virtual
screening

Nowadays a large collection of docking/scoring tools is available for high-throughput virtual
screening. Out of the flow of information generated over the last five years, a computational
chemist entering into a virtual screening project will haveto make a few decisions about the
screening strategy and the tools which are the most suited toits project. The first part of this
section is aimed at pinpointing some good practices in orderto avoid classical failures. The
second part of the section will review some recent success stories which could inspire the
reader for future work.

18.5.1 Influence of parameter settings

Several input parameters may affect the effectiveness of a VS run. Depending on the computa-
tional tool that has been chosen, the number of parameters may vary from a dozen to over one
hundred. It is therefore crucial to select the best possibleinput settings which unfortunately
are not always known in advance. However, a few robust guidesbased on current knowledge
can be derived.

Which library?

As reported above (Section 18.1.3), several commercially available compound collections are
available. There is usually no reasons to favor one particular compound collection over an-
other one. As most of them are easily accessible [11, 182], the best possible approach for an
academic user is to start from a unified and filtered dataset [85]. Of course, corporate and
focussed/targeted libraries may also be used. They are particularly interesting for screening
targets belonging to deeply-investigated families (e.g. kinases, GPCRs) and containing a high
percentage of true positives.

Whatever the database selected, it is generally advisable to downsize the number of mol-
ecules which will be submitted to 3-D docking. Beside some important filters (chemical
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reactivity (see Section 18.2.1), drug-likeness (see Section 18.2.3), etc.), it is important to
remove molecules which do not fulfill simple 2-D or/and 3-D pharmacophoric features. This
simple strategy aids in dramatically reducing the number ofpotentially interesting compounds
without losing many true positives [51, 129]. If one is simply interested in setting-up optimal
screening conditions (e.g. discriminating a few true actives from randomly-chosen decoys), it
remains important to carefully set-up the test dataset in order to avoid artificial enrichments
in true actives by making sure that chemical spaces covered by actives and inactives/random
compounds largely overlap [197].

Which ligand conformation(s)?

Most docking programs only requires a single low-energy conformation for each ligand of the
dataset, provided by automated 3-D converting utilities [157, 176]. For docking tools requiring
a multi-conformer ligand library, it is important to start from biologically-relevant conforma-
tions. Several studies agree to conclude that the most reliable conformations are not necessar-
ily produced by the most accurate and cpu-demanding methods. A safe start is to use fast con-
former generators like Omega (http://www.eyesopen.com/products/applications/omega.html)
or Catalyst [33] which accurately sample the biologically-relevant conformational space for a
wide array of chemotypes [19, 70, 93, 96].

Which protein coordinates?

When screening a high-resolution X-ray structure, severalinput coordinates might be available
describing either ligand-bound (holo) or a ligand-free (apo) structures. A systematic survey
over nine enzymes unambiguously demonstrates that the holoform if it exists should be the
first choice [19]. Furthermore, X-ray structures appear to clearly outperform the correspond-
ing homology models in discriminating known inhibitors from random decoys [134, 150].
However, if the sequence identity (on binding site-lining residues) to the X-ray template is
higher than 50 %, comparable enrichment rates in true inhibitors can be found [150]. This en-
couraging results suggests that genomic-scale VS might be feasible, provided that an accurate
description of the binding sites can be drawn from existing X-ray templates.

Which docking tool?

Starting from the pioneering work of Kuntz and coworkers [115], numerous docking programs
based on very different physicochemical approximations have been reported (see Chapter 16).
All docking tools combine a docking engine with a fast scoring function, and the recent liter-
ature is full of benchmarks addressing the accuracy of one orfew docking/scoring scenarios.
The three following issues are usually investigated: (i) the capability of a docking algorithm
to reproduce the X-ray pose of selected small molecular-weight ligands [93, 105, 159], (ii)
the propensity of fast scoring functions to recognize near-native poses among a set of de-
coys [56, 203] and to predict absolute binding free energies[56] (iii) the discrimination of
known binders from randomly-chosen molecules in virtual screening experiments [36, 93,
159]. However, analyzing all these data for a comparative analysis of available docking tools
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is very difficult. First, many tools are not easily available. Second, independent studies assess-
ing the relative performance of docking algorithms/scoring functions are still rare and focus on
the usage of few methods. Third, the quality judgment may vary depending on the examined
properties (quality of the top-ranked pose, quality of all plausible poses, binding free energy
prediction, virtual screening utility). Fourth, most docking programs assume approximation
levels that can vary considerably [74] and lead for example to very inhomogeneous docking
paces ranging from few seconds to few hours. Last, many docking programs have been cal-
ibrated and validated on small protein-ligand datasets. Hence, detailed benchmarks (� ���

PDB-ligand complexes) are only reported for few docking tools [28, 43, 108, 149, 151, 196].
The most recent validation studies on different datasets agree to conclude that the accuracy
of a docking tool is largely target-dependent [74, 96, 159, 203] and should be examined on a
case-by-case basis. Glide and Gold seem to be the most robustprograms for their propensity to
generate near-native poses in ca. 75-80 % [96, 159], provided that several solutions are stored.
A major problem is that the scoring function does not always predict the correct solution as the
most probable one (only in ca. 40–50% of the cases). This considerably complicates the anal-
ysis of docking results. Numerous reasons explain this limited accuracy [93]. Some are easy
to correct (e.g. incorrect atom type for either the ligand orthe protein), some are more difficult
(e.g. accuracy of the protein 3-D structure, flexibility of the ligand, accuracy of the scoring
function), and some are really tricky to overcome (protein flexibility, role of bound water).
The accuracy of a docking program to predict the protein-bound ligand pose is reflected in its
virtual screening efficacy, that is the ability to discriminate true binders from inactives and/or
randomly-chosen compounds [36, 93, 159]. However, predicting which docking program will
be the most suited for a research project is still problematic. If known ligands are available, a
pragmatic approach is to try a systematic combination of docking/scoring parameters and se-
lect for productive screening the one that best segregates true actives from true inactives. If no
or very few ligands are available, some guides may be followed to choose the tool that seems
the most appropriate regarding the physicochemical properties of the protein cavity [93].

Which scoring function?

The scoring function still remains the Achilles’ heel of structure-based virtual screening. Sev-
eral recent and independent studies conclude that many fastscoring functions can indeed dis-
tinguish near-native poses (rmsd lower than 2.0 from the X-ray pose) from decoys for ca. 70 %
of high-resolution protein-ligand X-ray structures [56, 203]. However, when docking is ap-
plied to a large database, the corresponding scoring function should be robust enough to rank
putative hits by increasing binding free energy values [97]. Unfortunately, an accurate predic-
tion of absolute binding free energies is still impossible whatever the method [36, 56, 204].
Predicting binding free energy changes is possible at the condition that a customized scoring
function is applied to a series of congeneric ligands. However, for a database containing a
large diversity of compounds, and for targets which have notbeen traditionally used for cal-
ibrating scoring functions, the obtained accuracy is usually limited (ca. 7 kJ/mol or 1.5 pK
unit) [75]. From this observation, two sources of improvement are possible: (i) design more
accurate scoring functions [204], (ii) design smarter strategies to post-process docking outputs
(see next section). Many computational chemists actually favor the second option. The accu-
racy of scoring functions has levelled off several years ago, for the simple reason that some
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unknown parameters (e.g. role of bound water, protein flexibility) remain extremely difficult
to predict whatever the physical principles used to derive ascoring function.

Which post-processing?

Acknowledging that scoring functions are far form being perfect, the easiest way to retrieve
true positives from a virtual screen is to first detect false positives. Many strategies are pos-
sible. The simplest consists in rescoring poses with additional scoring functions; hoping that
a consensus scoring [15, 28] will better identify true hits (top-ranked by several scoring func-
tions) from decoys (see Section 18.4.3. Comparing hit ratesbetween simple and consensus
scoring should however be realized on hit lists of comparative size [217]. Moreover, customiz-
ing a consensus scoring scheme requires first the knowledge of several and chemically-diverse
true hits. Such data are not always available. Therefore, for less well-investigated targets,
other strategies have to be designed. Topological filters can be used to filter out poses exhibit-
ing steric or electrostatic mismatches between the ligand and its target [184]. Poses can also be
minimized by a more accurate force field [90, 186], hierarchically clustered [154], analyzed by
Bayesian statistics [103]. In any case, the post-processing treatment should be simple enough
to be reproducible for a wide array of targets. The influence of different post-processing strate-
gies on the hit rate and the percentage of true hits recoveredis shown in Figure 18.4. In this
figure, the top-right corner with a hit rate of 100% and all true hits recovered would be the
optimum.

An alternative strategy for post-processing is to look at enrichment among true hits in
pre-computed substructures/scaffolds [147]. This presents the advantage of focusing more on
scaffolds and the distribution of docking scores among them, and less on individual molecules.
The effect is evident from Figure 18.4, where the results of such a post-processing are closer
to the optimal corner. Therefore, false negatives may be recovered if they share a scaffold
with true positives. Last but not least; selected hits should be browsed in 3-D target space for
the ultimate selection: no algorithms yet outperform the brain of an experienced modeler for
such a task!

18.5.2 Recent success stories

Only recent reports from the literature (2003–2005) will bereviewed herein. Most of them still
make use of high-resolution X-ray structures (next three subsections). However, encouraging
data begin to emerge from homology models (last subsection in this section) and thus broaden
the application of structure-based screening methods to a wider array of pharmaceutically-
interesting targets.

Some privileged targets

Macromolecular targets presenting a well-defined hydrophilic pocket for which the direction-
ality of intermolecular interactions play a key role in ligand recognition are particularly well
suited for virtual screening for the simple reason that mostdocking tools and scoring functions
have been calibrated for such situations [56]. Thus, it is nosurprise that some protein families
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Figure 18.4: Influence of post-processing strategies in retrieving truevasopressin V1a receptor antago-
nists by structure-based screening of a database of 990 randomly-chosen ’drug-like’ compounds seeded
with 10 true actives [16]. 1) top 5% ligands as scored by FlexX; 2) top 5% ligands as scored by Gold; 3)
hits common to 1) and 2); 4) ClassPharmer (Bioreason S.A.R.L., http://www.bioreason.com/) prioriti-
zation of scaffolds for which 60% of the representatives have a FlexXscore lower than��� ������

; 5)
ClassPharmer prioritization of scaffolds for which 60% of the representatives have a Goldscore higher
than�	 
�; 6) ClassPharmer prioritization of scaffolds for which 60%of the representatives have a FlexX
score lower than��� ������

and a Goldscore higher than�	 
�.

(e.g. kinases) are overrepresented in targets for which true inhibitors have been discovered by
database docking (Table 18.1).

Protein kinases have been deeply investigated by structure-based virtual screening [59,
83, 129, 158, 190, 191] to identify novel inhibitors for three major reasons: i) kinases are
among the most relevant target families for the pharmaceutical industry, ii) a wide array
of high-resolution protein-ligand X-ray structures are available for validation purpose, iii)
a canonical H-bonding to the so-called ’hinge region’ of thekinase is a typical hallmark of
ATP-competitive inhibitors. Two recent studies [129, 191]are representative of the results
which might be expected for kinase inhibitors. Vangrevelingheet al. reported a knowledge-
based virtual screening protocol for identifying casein kinase II (CK2) inhibitors, in which
post-docking filters were designed to downsize the hitlist [191]. Starting from ca. 400,000
compounds which were docked using Dock4.01 to the 3-D structure of human CK2, 12,000
molecules were first retrieved by score. This primary hitlist was then reduced to 1,592 mol-
ecules by selecting only hits which were H-bonded to the ’hinge segment’ of the protein and
well scored by a consensus scoring function. Visual check ofthe remaining hits afforded a hit
list of only 12 compounds out of which three molecules inhibited the enzyme with an�
��
lower than 10�� .

Pre-docking filters may be useful as well in selecting the most interesting compounds
by similarity to known chemotypes present in kinase inhibitors. A good illustration of this
strategy has recently been reported by Lyneet al. in the discovery of checkpoint kinase-1
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Table 18.1:Successful structure-based screening data from the recentliterature (2003–2005).

Target Docking Library Size Hit ratea Ref.
Chk-1 kinase FlexX AstraZeneca 550,000 36%@ 68�� [197]
Casein kinase II Dock Novartis 450,000 33%@ 10�� [191]
BCR-ABL Dock Chemdiv 200,000 13%@ 30�� [158]
p56 Lck Dock n.a.b 2,000,000 17%@100�� [83]
EphB 2 Gold Chemdiv 50,452 5%@ 10�� [190]
Protein Kinase B FlexX Chembridge 50,000 10%@ 20�� [59]
DHFR (S. aureus) FlexX Roche 9,448 21%@ 25�� [215]
DHFR Dock ACDc n.a. 33%@ 20�� [167]
Aldose reductase FlexX ACD 260,000 55%@ 20�� [106]
XIAP Dock TCMd 8,000 3%@ 5�� [148]
Stat3� Dock 4 collections 429,000 1%@ 20�� [183]
Ribosomal A-site RiboDock Vernalis 1,000,000 26%@500�� [58]

collection
IMPDH FlexX Roche 3,425 8%@100�� [162]
L-xylose reductase Dock NCIe 249,071 5%@100�� [26]
PDE4D FlexX Combinatorial 320 55%@100�� [109]

library
Thymidine Dock NCI 250,000 7%@ 20�� [138]
phosphorylase
t-RNA guanine FlexX 7 collections 827,000 55%@ 10�� [22]
transglycosylase
P450 2D6 Gold NCI subset 111 39%@ 10�� [95]
SHBG Glide Natural 23,836 7%@ 25�� [29]

compounds
TMPKmt FlexX CMCf + KEGGg 7,986 10%@ 20�� [45]
AICAR AutoDock NCI 1,990 51%@ 20�� [127]
transformylase
5-HT�� receptor Dock � �� suppliers 1,600,000 21%@ 5�� [13]
NK � receptor Dock � �� suppliers 1,600,000 15%@ 5�� [13]
D� receptor Dock � �� suppliers 1,600,000 17%@ 5�� [13]
CCR� receptor Dock � �� suppliers 1,600,000 12%@ 5�� [13]
5-HT� receptor Dock � �� suppliers 1,600,000 21%@ 5�� [13]� �� receptor Gold Aventis n.a. 30%@ 1�� [54]
NK � receptor FlexX 7 collections 827,000 14%@ 1�� [53]
D� receptor LigandFit NCI 250,000 40%@ 1�� [192]

aHit rate at a concentration threshold. The hit rate is the ratio of the number of active compounds to the total
number of compounds tested.

bnot available
cAvailable Chemicals Directory (http://www.mdli.com/products/experiment/availablechemdir/)
dTraditional Chinese Medicine Database (http://www.tcm3d.com/)
eNational Cancer Institute (http://129.43.27.140/ncidb2/)
fComprehensive Medicinal Chemistry Database (http://www.mdli.com/products/knowledge/medicinalchem)
gKEGG database (http://www.genome.jp/kegg/ligand.html)
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inhibitors [129]. A hierarchical screening protocol involving filters of increasing complexity
(simple molecular descriptors, 3-D pharmacophore search,FlexX-Pharm constrained dock-
ing, knowledge-based consensus scoring) decreases the number of virtual hits from 400,000
to 103, and allowed to identify novel inhibitors in four chemical series. Interestingly, most true
inhibitors were not recovered among the top-ranked poses but by rescoring at least the top 50
poses by a consensus scoring protocol designed from a surrogate kinase (Cdk-2) and a test
dataset. Post-docking filtering by similarity to well-defined intermolecular interactions may
also be a reliable option as it was recently shown to outperform consensus scoring in identi-
fying protein kinase B inhibitors [59]. In the above-cited cases, a precise knowledge-based
selection of the most reliable compounds has been achieved thanks to the large information
available for related compounds.

The same remark applies to three recent studies aimed at discovering inhibitors of two
reductases (dihydrofolate reductase, aldose reductase) [106, 167, 215], extensively studied in
the past. Wysset al. [215] docked a library of 2,4-diaminopyrimidines to the X-ray struc-
ture of DHFR fromS.aureuscomplexed with an in-house inhibitor. 252 out of the 300 top-
ranked compounds could be synthesized and tested for DHFR inhibition. 21 % of the proposed
compounds inhibited DHFR from eitherS. aureusor S. pneumoniaewith �
�� values lower
�� �� . Remarkably, a structure-based screening protocol was found to be much superior to a
ligand-based diversity selection in enriching a hit list intrue inhibitors.

Rastelli et al. [167] screened a subset of the ACD for inhibitors of the DHFR from P.
falciparumwhich would be insensitive to specific active site mutations. The full dataset was
first filtered by Catalyst (Accelrys Software Inc., http://www.accelrys.com/products/catalyst/)
to retrieve molecules satisfying a set of 3-D pharmacophores generated from known protein-
inhibitors X-ray structures and potentially able to bind tosome enzyme mutants. Docking the
focussed dataset using Dock, then selecting the top-rankedmolecules interacting with a key
residue and clustering by chemotypes afforded a final list of24 molecules. 12 compounds
truly inhibited DHFR wild type as well as active site mutantsat micromolar concentrations.

Kraemeret al. [106] identified, from the ACD, aldose reductase inhibitorsby a series of
hierarchical filters implying substructure similarity search to known inhibitors, 2-D pharma-
cophore filtering, FlexX docking and DrugScore scoring. Compounds able to bind to the
anionic pocket of the enzyme were prioritized for purchase and experimental evaluation. Out
of the nine compounds tested, six exhibited micromolar inhibition of the target. Interestingly,
DrugScore values were weighted according to the molecular weight and number of rotatable
bonds of the corresponding molecules to favor the selectionof lead-like compounds.

First-in-class compounds

Not all targets are suited for experimental high-throughput screening. However, if 3-D co-
ordinates are available, VS is still a cheap alternative to HTS. Two recent studies [148, 183]
demonstrate the power of VS for quasi-orphan targets (XIAP,Stat3) of interest for discover-
ing new antitumoral drugs. The X-ray structure of XIAP complexed to a peptidic inhibitor
was used to identify, within a database of 8,000 compounds derived from traditional Chi-
nese medicinal herbs, a nonpeptidic micromolar XIAP inhibitor [148]. Likewise, 429,000
compounds from various screening collections were docked to the X-ray structure of Stat3,
a signal transducer and activator of transcription. Rescoring the top 10 % scored compounds
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from each dataset with X-score [202] yielded 200 compounds out of which 100 could be pur-
chased and tested for Stat3 inhibition [183]. As in the previous study, obtained hit rates at
micromolar concentrations were rather low (a single hit outof 100 compounds tested) but a
totally novel compound could be discovered and used as a basis for further improvement.

Nucleic acids have not been widely investigated in structure-based screening approaches
mainly because of the lack of accurate scoring functions. Foloppeet al. [58] recently re-
ported the successful discovery of bacterial ribosomal A-site ligands by using a docking tool
(RiboDock) specifically designed for that purpose [142]. Anelectronic catalogue of 1 mil-
lion commercially-available compounds was first filtered toselect lead-like compounds and
father docked to the crystal structure of theE. coli ribosomal A-site. Visual inspection of the
top 2,000 best scored compounds yielded a list of 129 molecules which were evaluated by a
FRET binding assay. Five compounds, unrelated to the aminoglycoside series, exhibited an
apparent inhibition constant lower than�

� �� . This study is promising by widening the scope
of application of high-throughput docking to non-protein targets and more successful appli-
cations are expected in a near future thanks to a better parameterization of common docking
tools for predicting ligand binding to nucleic acids [42].

Fragment screening

Fragment screening by X-ray or NMR [197] is becoming an increasingly popular method for
identifying low molecular weight leads which usually showsa greater optimization potential
than drug-like compounds [80]. Because of the difficulty to correctly rank docking poses of
small fragments, computational screening of low-molecular weight compounds is still in its
infancy. Two recent reports [26, 162] indicate however thatthis approach might be promising.

Pickettet al. reported the discovery of low-molecular inhibitors of inosine 5’-monophos-
phate dehydrogenase (IMPDH) by virtual needle screening [162]. A test set of 21 true IMPDH
inhibitors and two in-house X-ray structures was first used to select the most adequate dock-
ing/scoring combination (FlexX docking/ScreenScore scoring). A corporate database of 3,425
low-molecular weight reagents was then docked to both X-raystructures to retrieve, among
top-ranked compounds, 100 virtual hits satisfying a visualcheck Out of the 74 compounds
evaluated for IMPDH inhibition, three molecules exhibitedan �
�� lower than�� ��

Carboneet al.[26], although not explicitly looking for fragments, also discover low-moec-
ular weight inhibitors of L-xylose reductase by structure-based screening. Hence, this enzyme
is characterized by a very shallow active site and most knownXR inhibitors are short chain
fatty acids. By screening with the Dock program ca. 240,000 compounds from the NCI dataset
(National Cancer Institute, Enhanced NCI Database browser, http://129.43.27.140/ncidb2/)
against the X-ray structure of Xylose reductase (XR), a limited number of putative hits (ca.
1,000) could be prioritized by score and known interactionsto key catalytic residues. Out of
39 molecules which were purchased and evaluated for XR inhibition, two carboxylic acids
(nicotinic acid, benzoic acid) inhibited the target with�
�� values under

��� �� .

Chapter 16 discusses methodical aspects of fragment-baseddrug design.
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Lead optimization

A large majority of structure-based screening projects areaimed at identifying hits. However,
lead optimization might be possible at the condition that the binding mode of the starting lead
can be unambiguously recovered and that a rationale exists for selecting the next compounds
to synthesize and test. Krieret al. [109] recently proposed a straightforward approach for
exploring a lead series by enumerating small-sized libraries (a few hundred compounds) in
which all combinatorial assemblies of a few linkers and pharmacophoric moieties to a given
scaffold are probed. The selection of the best analogues wasbased on FlexX docking to
the X-ray structure of the phosphodiesterase target and topological filtering. A single-round
screening campaign on nine synthesized analogues yielded to a subnanomolar inhibitor and
a 900-fold improvement in affinity over the starting lead. Lead optimization is discussed in
detail in Chapter 19.

Homology models as virtual screening targets

All above-reported applications have used high-resolution X-ray structures to represent the
3-D coordinates of the target under study. However, enzymesfor which a crystal or an NMR
structure are still missing but which shows enough sequencehomology (ca. 50 %) in the active
site to a X-ray template, can also be used for database docking approaches with reasonable
success [138]. However, there is still a debate whether targets ranging in a much lower ho-
mology range (� 30 %) might be reliable starting points. This observation isparticularly
relevant for G-protein coupled receptors (GPCRs) a target family of outmost pharmaceutical
interest for which a single X-ray structure (bovine rhodopsin) might be used for comparative
modelling. Several recent reports [13, 16, 53, 54, 192] demonstrated that GPCRs might be
suitable indeed for structure-based screening. In all above-cited successful cases, preliminary
knowledge about known ligands was necessary to fine tune the receptor model. Moreover, the
choice of a relevant pharmacophore hypothesis was a key factor to downsize the number of
molecules for docking. Last, a visual inspection was necessary to ensure that key intermolec-
ular interactions were established with selected hits. Although the derived homology models
remain crude with respect to high-resolution X-ray structures, drug-like sub-micromolar an-
tagonists for rhodopsin-like receptors [13, 16, 53, 54, 192] have already been discovered by
VS.

18.5.3 Concluding remarks

Virtual screening of compound libraries by high-throughput docking is nowadays a routinely-
used computational technique for identifying bioactive ligands with numerous proofs of record.
One should however keep in mind that the method is highly sensitive to the 3-D coordinates
of the target and is likely to generate numerous false positives. As important as the docking
itself are the pre- and post-processing steps which are key factors to optimize the hit rate.
The number of new validated chemotypes amenable to optimization is therefore a better de-
scriptor than the simple hit rate which considerably vary with regard to the current knowledge
on a particular target. VS is a natural complement to traditional medicinal chemistry and
particularly well suited for proposing new molecular scaffolds that can be easily converted
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into focussed ligand libraries of higher values. Both methodological improvements (scoring,
hit triage, prediction of ADMET properties) and better screening collections (focussed and
targeted libraries) should contribute to improve the valueof this powerful tool in a near future.

18.6 Critical evaluation of ligand-based virtual screening

The choice of tools for ligand-based virtual screening is atleast as complicated as for structure-
based techniques. While for structure-based techniques mainly the ’right’ docking program
has to be chosen, for ligand-based VS also the method itself,e.g., similarity search or phar-
macophore search, has to be chosen. The first part of this Chapter will evaluate and com-
pare several methods and give guidance for selecting appropriate methods and/or tools for the
screening. The second part will then — as in Section 18.5 — review some recent success
stories and, finally, will draw some conclusions on which methods to apply.

18.6.1 Influence of parameter settings

For ligand-based VS the considerations about the choice of the library and its preprocessing
are identical to those for structure-based screening (see Section 18.5). The main selection
process is then, which method among those of Section 18.3 is chosen. This depends mainly on
the number of known active ligands available. If at least some (more than 5, better more than
20) ligands are known, a ligand-based pharmacophore model can be derived. If additionally
their activity is known, QSAR techniques are possible. If, however, less actives are known,
only similarity searches can be performed at this stage.

18.6.2 Recent success stories

Here, we review recent studies from the literature (2003 – 2005) covering the entire field of
ligand-based techniques (Table 18.2), ranging from pharmacophore searching over similarity
searching to QSAR studies.

The studies of Laggneret al. [117] and Peukertet al. [161] demonstrate the application of
ligand-based pharmacophore models in VS. Laggneret al. [117] built pharmacophore mod-
els for ERG2, the emopamil binding protein (EBP), and the� � receptor using Catalyst. The
training set comprised 23 structurally diverse ligands with a broad activity range from pico-
molar to micromolar affinity. The pharmacophore models wereassessed using cost analysis
and randomization tests. Furthermore, on a testset of 9 molecules with binding affinities from
sub-nanomolar to micromolar, from 26 measured affinities, 14 were predicted within 1 order
of magnitude. The pharmacophore models were then used for VSof the WDI. From the WDI
previously known binders were found as expected but also a number of new hits. Among
them, 11 were experimentally tested and hitrates between 55% and 75% were obtained for
the three targets. Subsequently, the pharmacophore modelswere altered to perform a search
in a subset of the KEGG database of 3,525 metabolites. Peukert et al. [161] described the
discovery of novel blockers of the Kv1.5 potassium ion channel based on pharmacophore
search. The authors used DISCO for pharmacophore elucidation using a training set of 7
known Kv1.5 blockers. The pharmacophore model obtained wasconsistent with published
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Table 18.2:Successful ligand-based screening data from the recent literature (2003–2005).

Target Method Library Size Hit ratea Ref.
ERG2 Pharmacophore WDIb 48,405 55%@ 1�� [117]
� � receptor Pharmacophore WDI 48,405 63%@ 1�� [117]
Emopamil Pharmacophore WDI 48,405 73%@ 1�� [117]
binding protein
Kv1.5 Pharmacophore Aventis n.a.c 6%@ 6�� [161]
A�� purinergic Pharmacophore Combinatorial 192 53%@ 10 nM [179]
receptor similarity library
mGluR5 Pharmacophore Asinex 194,563 33%@ 70�� [168]

similarity
Tat-TAR RNA Pharmacophore SPECS library 229,659 11%@500�� [169]
interaction similarity
H� receptor QSAR Combinatorial 9,000 87% Watanabed [48]

library
Trichomonas QSAR in-house 100 25%in vitroe [140]
vaginalis
Kv1.5 Similarity Aventis n.a. 1%@ 10�� [160]
MCH-1R Similarityf 24 collections 650,000 2%@ 30�� [30]
D� receptor Pharmacophore 2 collections 255,286 40%@100 nM [25]

fingerprints
COX-2 Pharmacophore Commercial 2,700,000 15%@ 10�� [60]

fingerprints collections

aHit rate at a concentration threshold. The hit rate is the ratio of the number of active compounds to the total
number of compounds tested.

bWorld Drug Index (http://scientific.thomson.com/products/wdi/)
cnot available
dAntihistaminic activity according to the protocol of Watanabeet al. [207]
eCytocidal activity of 100% after 48 h at a concentration of 100 ��/ml.
fA combination of 2D and 3D substructure search, 2D and 3D similarity, as well as clustering was used.

SAR data and was able to retrieve 58% of a testset of 423 known Kv1.5 blockers. A 3D
search was performed on the Aventis compound collection resulting in 1,975 hits after filter-
ing. In a subsequent clustering 27 clusters were obtained and representatives of 18 clusters
were screenedin vitro. One active compound was found with an IC�� of � �� �� belonging to
a new class exhibiting a favorable pharmacokinetic profile.

Schneider and Nettekoven [179] demonstrated the use of a topological pharmacophore
similarity model named CATS [178]. This approach was applied to the prediction of selective
purinergic receptor (A�� ) antagonists from a virtual combinatorial library. From a preliminary
SAR model an artificial neural network (self-organizing map, SOM) was trained. Molecules
were encoded by the CATS descriptor and the features were mapped from 150-dimensional
space onto the plane of a SOM. Each field of the SOM has thus certain pharmacophore fea-
tures in common. With this technique, the library was reduced from 192 to 17 combinatorial



18.6 Critical evaluation of ligand-based virtual screening 33

products. These 17 molecules exhibit 3-fold higher bindingaffinities and 3.5-fold higher se-
lectivities than the initial library. The most selective antagonist displays 121-fold selectivity
and an affinity of 2.4 nM. The CATS3D descriptor, a 3D extension of the CATS approach,
was used by Renneret al. [168] to identify metabotropic glutamate receptor 5 (mGluR5)
modulators. From the original library of 194,563 molecules, first, the 20,000 most ’drug-like’
compounds were selected and screened by similarity of the CATS3D vectors with each of
7 active molecules. Of the obtained 27 top-scoring molecules 9 exhibited an activity below�� �� . The authors validate, that the method used allows for pharmacophore-based similarity
searching with ’scaffold-hopping’. This descriptor was also reported to be successful for iden-
tification of new inhibitors of the Tat-TAR RNA interaction [169]. In addition, also a ’fuzzy’
pharmacophore approach (SQUID) was used. Again, the 20,000most ’drug-like’ compounds
of an initial library of 229,658 compounds were screened. Inthe VS the similarities were
calculated by the Manhattan-distance for the CATS3D and a similarity score for the SQUID,
respectively. Both techniques revealed 10 hits, with one molecule overlap. Two molecules
among them had IC�� values of�

�� �� and
�� �� , respectively.

A screening for antihistaminic compounds blocking the� � receptor was performed by
Duart et al. [48] using a QSAR model based on molecular topology descriptors. From the
initial virtual library of 9,000 compounds, 236 molecules were predicted as active. Of the
selected 7 most promising compounds, experimental testingexhibited antihistaminic activity
in 87%. The discovery of trichomonacidal compounds was reported by Meneses-Marcelet al.
[140]. A linear discrimination analysis (LDA) QSAR model was trained to classify molecules
using atom-based quadratic indices as descriptors. Since validation of the model revealed 88%
good classification, a virtual screening was performed. Biological assays of 8 compounds se-
lected by screening gave good classification. Two moleculesmaintained their efficacy against
Trichosomas vaginaliseven at

�� ���� �
and one of them did not show cytotoxic effects in

macrophage cultivations.
A 2-D similarity search with Unity was performed by Peukertet al. [160] for blockers of

the Kv1.5 ion channel. Using a compound with an IC�� of
� �� �� as reference molecule,

75 compounds with a similarity value of� � �� were found in the Aventis compound library
and experimentally tested. In this step a moderately activecompound (IC�� of � �� �� ) was
discovered. Although, this compound was rejected due to problems with its stability and
properties, a compound with similar side chains but a different scaffold (naphthene spacer
replaced by a biphenyl group) was identified as lead (IC�� =

� �� �� ).
Clark et al.performed substructure and similarity searches, both in two and three dimen-

sions, among other techniques, for discovering MCH-1R antagonists. As query compounds
11 known MCH-1R antagonists were selected. The combined hits from all searches were se-
lected (3,015 molecules) and assessed for drug-likeness, synthetic tractability, and molecular
properties. After duplicate removal, 1,490 compounds remained which were clustered using
Daylight fingerprints. After final visual inspection 795 compounds were purchased and bio-
chemically screened, resulting in 19 compounds with IC�� values below

� �� and the best
having an IC�� of �

� �� . Clark et al. analyzed, which of the searches revealed which of the
19 compounds. Six compounds were found by 3D similarity search with FlexS only, also six
were found by 3D substructure search only, two were found by aclustering approach only,
and one was revealed only by 2D similarity search. Just four compounds were discovered by
more than a single technique. The hit rates were in the range of 0.0% (2D substructure) to



34 18 Lead Identification by Virtual Screening

5.6% (2D similarity).

18.6.3 Comparison of structure-based and ligand-based techniques

Recently groups at Roche [14], at Aventis [52], and at Argenta Discovery [30] compared
structure-based and ligand-based techniques for virtual screening for GPCR targets. Bissantz
et al. [14] performed a comparative evaluation of the techniques for searching 5-HT�� ag-
onists, while Everset al. [52] performed the comparison on four different biogenic amine-
binding GPCRs (�1A, 5-HT�� , D2, and M1 receptors) and Clarket al. [30] used a num-
ber of ligand-based techniques (see above) and compared them to structure-directed pharma-
cophores.

In the work of Bissantzet al. the results of docking into homology models with FRED
were compared to results from Daylight fingerprints, FeatureTrees, and the program Phacir.
The performance was assessed by hit rate, enrichment factor, and the diversity of the struc-
tures retrieved. Test database was a collection of actives and inactives from the Roche com-
pound depository, with high similarity between actives andinactives. Four molecules were
used as reference for the three similarity search programs (so in total 12 similarity searches
were performed) and the top 20% of the ranking lists were analyzed. Each of the 207 actives
was retrieved with at least one of methods by combining the results for each of the reference
molecules. When looking at the 12 screening runs, in each individual search many compounds
were not retrieved, or even worse, not a single compound withsome of the scaffolds was
found. Furthermore, the results show that the success of themethods depends strongly on the
choice of the reference ligand. While all three similarity measures obtained hit rates of at least
4.8% and enrichment factors of� � �� for one of the ligands, for another reference ligand the
best hit rate was only 2.8%. Some combinations of method and reference ligand did not per-
form better than random selection. For comparison the docking program FRED was applied
using different scoring functions. The hit rate was between3.0% and 4.5% and the enrichment
factor between 1.5 and 2.2. Thus, while the top-performing ligand-based techniques reached
better hit rates than docking, docking always performed better than half of the ligand-based
screening runs. Furthermore, the compounds retrieved by structure-based techniques were
more diverse on average than those from ligand-based screening. The authors conclude that
the results of structure-based screening are more stable than those of ligand-based screening.
The latter can yield higher hit rates, but only for some of thereference ligands. In addition, the
actives retrieved by docking were more diverse. Based on these results, the authors propose
to combine at least one similarity search with a docking technique.

Everset al. [52] also compared docking into homology models to ligand-based protocols.
For the latter, ligand-based pharmacophores, multiple Feature Trees (MTrees) as well as 3D-
similarity by FlexS, and QSAR models were applied. Pharmacophore and a MTree models
were compared on two different reference ligands (one for each class of ligand molecules) for
each GPCR. In this study, ligand-based pharmacophore, MTrees, and 2D QSAR techniques
received higher enrichment factors than docking into the homology model with GOLD and
FlexX-Pharm. However, the results with GOLD were still satisfying. The authors conclude
that docking into GPCR homology models can be useful if no or only a few active ligands are
known. In this study the hit rates obtained with FlexS are worse than those obtained from the
other virtual screening techniques applied. This is in contrast to results of other studies (e.g.
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Clark et al. [30], see above and below) where FlexS gives respectable results. Everset al.
conclude that a ’fair’ comparison can be made only by using several reference structures for
the queries.

Clarket al. [30] compared a set of different ligand-based methods (see above) to searches
using structure-directed pharmacophores. The pharmacophores were generated by docking
one ligand into an homology model, then aligning nine other molecules with GASP on the
docked conformation and refining the complexes by simulatedannealing. Based on this align-
ment three different pharmacophore hypotheses were derived and used as queries, but none of
them gave rise to a hit.

Ligand-based and structure-based virtual screening has not only been compared for GPCR
targets. Another group at Aventis used a number of techniques for the search for Kv1.5
ion channel blockers. Besides the ligand-based work (ligand-based pharmacophore and two-
dimensional similarity, see above) also a structure-basedscreening was performed in which a
protein-derived pharmacophore based on a homology model was used [163]. The structure-
based VS gave a higher hit rate (7.8%) than the screenings based on ligand-based pharma-
cophore (5.5%) and similarity searches (2.7%). Furthermore, the structure-based technique
yielded more active compounds and more chemotypes. Even more important is the result
that there was no overlap between the hit lists obtained by ligand-based and structure-based
approaches.

18.6.4 Concluding remarks

From the large number of successful applications of ligand-based virtual screening two general
and simple rules can be derived. These rules help to reduce the false negative rate (ligands
being active but not found) of the screening.

1. Use as many query ligands as possible.Several authors have reported that some ligands
perform very poorly not giving any hit at all, while with other reference ligands many
hits were found. Unfortunately, it cannot be determined in advance, which of the ligands
will be successful.

2. Use as many different techniques as possible.While some of the hits are ’easy’ to find
by many different techniques, often valuable compounds (e.g. unique scaffold) are found
only by one of the techniques. Again, it cannot be predicted,which of the techniques
will be successful. It is important to note, that not necessarily the most sophisticated
techniques yield the most hits. In some cases a very simple search technique can find an
interesting compound.

Comparing ligand-based and structure-based techniques isdifficult since the effectiveness
of ligand-based and structure-based techniques depends strongly on the screening project. For
some targets the ligand-based techniques perform better than structure-based methods while
for other targets they perform worse. From this finding a third rule can be derived:

3. Use both ligand-based and structure-based techniques if possible.In this combined sce-
nario the maximal benefit of the different starting points can be obtained and the best
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compromise between the strengths and limitations of the various methods can be ob-
tained. In other words, make use of the complementarity between ligand-based and
structure-based techniques [14].
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