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18 Lead Identification by Virtual Screening

Andreas Kamper, Didier Rognan, Thomas Lengauer

18.1 Introduction

The identification of new drugs is a research topic of outlitaminterest. Due to recent
progress in the determination of several complete genomeesees including the human
genome, the structural genomics projects aiming for stireatletermination of all naturally
occurring protein folds, new techniques for target valmatand the advances in bioinformat-
ics, our understanding of the nature of many diseases airdcthesative facts is constantly
increasing. These efforts help to achieve the goal to iflemtivel small molecules interacting
with proteins and in this way find new drug targets. In the y2G00 it has been anticipated
that the number of potential drug targets will increasedkhf47] which was too optimistic
from todays view [177]. The number of druggable proteins &erlikely to bex 2,200 —
3,000 [81, 174]. Of thems 600 — 1,500 are disease-related and thus are putative dgejsa
for small-molecule drugs [81].

The availability of new targets calls for effective systeimprocedures for finding putative
drugs that bind to these targets. The process of searchioggh a collection of compounds
for molecules showing biological activity against a givarget is calledead identification
This lead identification is acreeningorocedure (Section 18.1.1) and part of the overall drug
discovery process. It can be subdivided into several idd&i steps (Section 18.1.2). As
a prerequisite for screening, the molecules which aredesgainst the target, theereening
compoundgSection 18.1.3), have to be preprocessed (Section 1&h2)adtual screening can
be performed with a variety of methods outlined in SectiorB18 he results obtained from
these methods need to be analyzed and interpreted (Se8tibn The final Sections 18.5 and
18.6 of this chapter provide recent case studies and dritieduations of structure-based and
ligand-based virtual screening techniques.

18.1.1 Screening techniques

Until a few decades ago, the search for drugs was a trialeerad-procedure, with the target
proteins being mostly unknown. In the last few decades ofitleatieth century, two different
systematic techniques for searching for drugs have becatessible. Both of them are
based on the fact that, increasingly, the target proteindriogs or putative drugs have been
identified. The two approaches are:

e High-Throughput Screening (HTS) is an experimental tegh@j where in a fully-auto-
mated fashion, a robot tests all molecules from a libraryrej@ molecular test system
[78].
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¢ Virtual Screening (VS), on the other hand, is a pure compriat technique. Here, the
computer is used to estimate biological activities, e.glinig affinities. This includes
one or more computational techniques.

These techniques can complement each other in the sen&&tigatides the experimental
setup of HTS, but recently VS is also more and more seen astemative to HTS [101].
There are many concepts for the integration of both appexah 69], showing the benefit of
including experimental anith silico methods in the drug discovery studies. As example, VS
methods can be used to select a subset of compounds for HbSaoalyze the results of a
HTS experiment.

Due to their different nature, VS and HTS techniques havierifit advantages and dis-
advantages. For HTS, the major drawback is the cost of therempnts. The cost is mainly
determined by the purchase of compounds of about US$ 1.0€opgpound [198]. This has
to be multiplied by the number of compounds used per HTS gpically on the order of a
few hundred thousands. In addition, supplies and an assayesded. For both the cost is
highly depending on the type of target. On the other handptaj@r limitation for VS is the
need of prerequisite knowledge about the binding procéskelle are neither known actives
which can serve as templates nor a 3D-structure of the targétin, VS cannot be used.
Either the three-dimensional structure of the target mestrtown, then methods of structure-
based design can be used (see Chapter 16). The other ptsshhat at least one ligand is
known that binds to the target, such as the natural substrateother inhibitor. In the latter
case, methods of ligand-based design can be applied. Aastiastadvantage of VS is its
applicability to not yet synthesizedirtual compounds. This facilitates screening of virtual
combinatorial libraries with up to billions of molecules.id obvious that VS methods must
be very efficient to deal with such large numbers of compoumtss, often not only a single
technique is used for VS. Instead, screening proceeds inquesee of steps each of which
reduces the number of cinsidered compounds, starting \eity fast techniques, followed by
more advanced but computationally more expensive tecksiqu

Within this chapter we will cover all computational aspesft¥S. The sections on prepro-
cessing of libraries (Section 18.2) and post-processitnit dibts (Section 18.4) are also valid
for HTS. However, we will exclude the more technical aspet@ata handling and informa-
tion storage of HTS. Furthermore, the structure-basedydesichniques covered in detail by
Rareyet al.in Chapter 16 of this volume will not be included here.

18.1.2 Drug discovery process

Drug discovery is a time-consuming and expensive procegsgich involves a number of
steps. Although the process is not linear — several of thessbave to be repeated itera-
tively — it is often represented as a pipeline (Figure 18\djithin the pipeline, screening
is performed during hit identification after a suitable dtagget has been identified and val-
idated. A hit can be defined as a compound which exhibits agtbinding affinity to the
target. In order to perform a screening run, first a collectd compounds (Section 18.1.3)
is submitted to the pipeline. This collection has to be pregdor screening using a number
of preprocessing steps (Section 18.2.1). Specificallyitetsle compounds are discarded by
filtering steps. Next within the pipeline a structure-baseligand-based technique is applied
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Figure 18.1: The drug development process. Screening is applied forchegiuhe number of initial
compounds to a hitlist of molecules with a high binding affiniCompounds from the hitlist are sub-
sequently optimized to leads. The final steps (not shownjheme the finding of candidate structures,
clinical trials, and finally the approval of the new chemieatity (NCE) by the authorities.

to further restrict the number of compounds (for liganddshsethods see Section 18.3, for
structure-based methods see Chapter 16). This is not metegerformed in a single step.
Quite common is also the use of several cascading technigtagtng with a fast but inac-
curate method to exclude many compounds, ending with a slivedtter method to screen
the most promising compounds (see Sections 18.5 and 18r6dent examples). Finally, a
number of molecules exhibiting a strong binding affinity he target are obtained, timés.
The crude hitlist obtained by these methods needs to be zzthind compounds need to be
sorted to prioritize subsequent lead selection (Sectiof)1& further steps of drug develop-
ment, top-ranking compounds of the hitlist are refined anahallnumber of lead structures
exhibiting promising properties are obtaindut{to-lead which may be optimized further to
finally becomecandidatesised in clinical trials. The respective drug optimizatiearniques
are described in Chapter 19 of this volume.

18.1.3 Compound collections

The number of all possible drug-sized molecules, the Jirthamistry space, is huge. A
systematic exploration of a small part of this space withenoles up to eleven heavy atoms
was recently performed [57]. After exclusion of unsuitatiemicals with many small rings,
over 13 million different compounds remained. A typical gimolecule can be up to twice
as large as the compounds investigated in this study (asenags of 340 Da [55], about 24
heavy atoms). Estimates of the number of 'drug-like’ molesaccessible to current synthesis
procedures are on the order 1f®® [18] to 10'°° [200]. These numbers indicate, that even
when combining all compounds ever synthesized (estim&®@dmnolecules), we cover an
almost negligible fraction of the virtual chemical space.

Compounds for screening can be obtained from databasesowirkstructures, from
combinatorial libraries, or fronle novodesign programs. Due to problems with synthe-
sizability, often only known structures are consideredpidsl databases with organic lab-
oratory compounds (e.g. MDL Available Chemicals Directt®D, http://www.mdli.com/
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products/experiment/availabtdhemdir/) or SPRESI (http://www.spresi.com/)) are not suit-
able sources for screening compounds due to the non-deygldperties of most of the en-
tries. (In fact, these databases are used as referencesfairngs, see below). Much better
sources are collections available in-house to pharma@datmpanies or offered by screen-
ing compound vendors, containing historical compoundscamabinatorial libraries. Within
the MDL Screening Compounds Directory (SCD, http://wwwlinedm/products/experiment/
screeningcompounds/) database, over 3 million screening compouedsted together with
supplier information. Unfortunately, all these compouathtbases need extensive cleanup to
be suitable for drug screening. Very recently, ZINC, a aoldarge screening library of pur-
chasable compounds has become available [85], in whicheaktgsary preprocessing steps
(Section 18.2.1) have been performed already.

Reference data of pharmaceutical compounds at variouesstafgdevelopment can be
taken from the MDL Drug Data Report (MDDR, http://www.mdtbm/products/knowledge/
drug datareport/), the World Drug Index (WDI, http://scientific.tim@son.com/products/wdi/),
or the MDL Comprehensive Medicinal Chemistry (CMC, httpuliv.mdli.com/products/
knowledge/medicinathem) database.

18.2 Filtering and preparation of ligands

The data from screening compound collections are usuatlguitable for virtual screening

off the shelf. On the one hand, this is due to incomplete mftron (often missing 3D co-

ordinates, stereochemistry, hydrogen atoms). On the ttred, chemical libraries tend to
contain a number of undesired compounds and a lot of dupicathus, before a library of

compounds can be used in VS, a number of preparatory andnijteteps (Section 18.2.1)
have to be applied. Among these filters, bioavailabilitycffe 18.2.2) and drug-likeness
(Section 18.2.3) of the compounds are of special relevartoe overall preparation process is
summarized in Figure 18.2.

18.2.1 Library preprocessing

An initial preprocessing step comprises the separationntries with more than a single
molecule (e.g. containing a charged species and its coiorisy into their constituent en-
tries. Next, all non-organic molecules (e.g. chloride jomater) must be removed. The most
obvious and easiest method is the removal of all moleculdsowt any carbon atom. Alterna-
tively, as almost all drugs contain a bond between carboradretero-atom, another strategy
is to remove molecules without any of these bonds.

Then the library is subjected to a functional group filterrélsubstructure search is per-
formed in order to identify and discard compounds with knawdesired groups in the library.
This technique can be applied to reactive functional gr¢lip8], groups unlikely to be leads,
promiscuous binders, and even functional groups classiigdxic [201]. Strategic pooling,
a technique proposed by Haanal.[75], can also be applied by using functional group filters.
For instance, if the ligand is required to contain an acidmug, only compounds with this
function are integrated into the final library.
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Figure 18.2: Example preprocessing workflow for chemical libraries (se¢ for details).

— generation of stereoisomer(s)

A common problem of HTS and VS consists of small moleculedibimto many differ-
ent proteins, resulting in false positive results (so chlfeequent hitters’ or 'promiscuous
binders’) [135, 172]. By statistical methods based on subsires, Rochet al.[172] devel-
oped a scoring scheme based on a neural network to classlcules as frequent hitters.
Merkwirth et al. [141] use an ensemble model for this classification. Moleslovalently
binding to proteins can be filtered out using reactive fuoral group filters (see above).

Finding duplicates in screening libraries significantldwees the number of compounds
to be tested. A one-by-one subgraph matching of connecthias for all pairs of compounds
is too expensive for collections with more than a few thodsaolecules. Instead, a represen-
tation of the molecular structure which can be comparedyessgjenerated. Often chemical
hash codes like those provided by Ihlenfeldt and GasteRgrdre used. Here, the molecular
topology is encoded in a single number, the hash value. Ifitash values are different, the
molecules are different. If the hash values are identibal ttvo compounds are most likely
identical. Only in extremely rare cases, two different connpds exhibit the same hash code.
To be sure, a substructure matching has to be performed itevdical hash codes have been
found. An alternative to hash codes is the generation of quanstring for every molecule.
This can be done by using the SMILES representation (Siragl¥olecular Input Line Entry
System) after Weininger [210]. An enhancement of the SMIE®esentation can gener-
ate unique strings [209] by using an atom ordering schemé&haik suitable for molecular
comparison.

The methods described so far need the two-dimensionalgepiaion of the molecule
in form of a connection table only. If three-dimensionalorrhation is needed further in
the screening pipeline then, as a next step, this informatiast be generated from either
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two-dimensional coordinates (e.g. most Structure DasFBDF) or connection tables (e.g.
structures in one-dimensional string representatioke, SMILES or Sybyl Line Notation,
SLN). Due to the still large amount of data this can only beelefiiciently by structure gen-
eration programs. These convert the connection table istogde low-energy conformation.
The two most widely applied tools of this kind are CONCORD {lLand CORINA [176].
CONCORD uses rule sets based on literature values of bomgthiemnd torsion angles to
construct the molecule. Based on these values, acyclis pathe molecule are constructed.
For cyclic parts special rules pertaining to ring geomseteee applied. Ring systems are ob-
tained by merging conformations of the individual rings aptdimizing the geometry such as
to minimize the strain. CORINA works similarly, but incluslenore literature data and has a
backtracking algorithm for generation of strained ringteyss.

While the three-dimensional structure is generated, médion on the stereochemistry of
the compound has to be included. The often incomplete atiootaf the stereocenters is
a pervasive problem with current compound collections. hEstereocenter offers a choice
of two stereoisomers (for the relevant cases asymmetrézhbns and cis-trans-isomerism).
Which of these alternatives are explored is up to the userexXraustive generation of all
possible stereoisomers of the compounds is one extrentarding the molecule due to in-
complete information is the other. Typically, only a smalhmber of stereoisomers are gen-
erated at this stage. Some programs even allow to handéostarters as variable during the
calculation [62].

Next step in preprocessing, although often combined witlictire generation, is the ad-
dition of missing hydrogens. This includes the assignméat protonation state and an as-
sessment of the tautomerism of the molecule. Dependingeagtblication, either the most
likely or all protonation states/tautomers are generatedypical approach for assignment
is the use of empirical rules. For example, carbonic acidugually kept deprotonated and
primary aliphatic amines are protonated. A program for gatien of protonated forms is
LigPrep from Schrodinger LLC (http://www.schroedingem/). Tautomers can be gener-
ated with TAUTOMER (http://www.mol-net.de/software/tamer/) by Molecular Networks
GmbH.

Depending on the methods used for screening, often the coafwmnal space of a mol-
ecule needs to be explored by a VS program. While the streiggeneration programs (see
above) produce a single structure only, the conformatianalysis programs produce a set
of alternative low-energy conformations for a molecule.atle has reviewed the available
techniques [119] and several available programs have lwapared [20], whether they pre-
dict bioactive conformations correctly. The OMEGA progrémttp://www.eyesopen.com/
products/applications/omega.html) by OpenEye, usindgalvased algorithm, currently seems
to provide the best tradeoff between accuracy and spee@(]9,

During all the steps of the screening procedure the idenofityhe molecules (e.g. their
registry numbers, order information) has to be maintaimetisgored, typically in a relational
database system.

18.2.2 Bioavailability

It is highly desirable for a drug to be administered by ora@estion in order to be easily
applicable by the patient. Thus, the molecule must haveoredde aqueous solubility and
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has to pass the intestinal membrane in order to enter bloodlaiion. Bioavailability —
a transport phenomenon — is often confused with drug-likendHere we keep these two
entirely different subjects separate. We discuss bioalviitly in this section and drug-likeness
in the next Section 18.2.3.

By analysis of molecules that have entered clinical triated(thus, are bioavailable), Lip-
inski and coworkers established the 'rule of five’, which\gdes a simple heuristic rule for
oral bioavailability [128]. It is likely that a molecule eidits poor absorption, if two or more
of the following criteria are fulfilled:

e Number of hydrogen bond donors (counted as number of O—H antiNroups)> 5
¢ Number of bond acceptors (counted as number of any O or N atoif)
e Molecular weight> 500

e Calculated logP> 5 (if ClogP is used, see below)

Here, logP represents the logarithm base 10 of the octaatd@rvypartitioning coefficient, a
property which can easily be calculated by property estomaechniques [143]. Among the
estimation techniques for logP, ClogP introduced by HamsthLeo [76] and available from
BioByte Corp. (http://www.biobyte.com/) is widely accept The idea of simple property-
based rules as rejection criteria for bioavailability wateaded by Ghoset al. [64]. Here,
ranges were calculated for logP, molar refractivity, malacweight, and number of atoms.

After development of fast estimation methods for the polafaxe area (PSA) by Clark
[31] and Ertlet al.[50], rejection of molecules with a PSA 140 A was proposed as the only
rejection criterion. Vebeet al.[193] analyzed a database with drug candidates. They ¢lassi
fied compounds as bioavailable, if the PSA was less tharila the number of rotatable
bonds less than 12. More detail on bioavailability and, ng@eerally, on ADME properties
(absorption, dissipation, metabolism, excretion) is fded by Baringhaus and Matter in the
subsequent Chapter 19 of this volume.

18.2.3 Drug-likeness

With the filtering methods described above, the knowledgeedicinal chemists on whether
a compound might be a good drug or not, is not taken into adcdurs desirable that the
compounds in a screening library have the typical propedfedrugs. Thus, a binary classi-
fication, whether a compound is 'drug-like’ or not must befpened on all compounds. The
challenge regarding this problem is that 'drug-likeness property which is not easily eval-
uated and not related in a simple fashion to other chemibgkipal, or biological properties.
In order to solve the decision problem, the knowledge of wiedl chemists for assessment of
'drug-likeness’ is used. The implicit knowledge on drukelness is inherent in the databases
of known drugs and can be extracted by comparison with daésoaf non-drugs [5, 65, 175].
Implicit information on drugs is contained in the MDDR, WRInd CMC databases (see
Section 18.1.3). Within these databases, not all entrieexsisting drugs, but the majority
of entries were designed by medicinal chemists with thentiti@ of developing a drug. In
contrast, databases like the ACD or SPRESI of general ccgampounds are supposed to
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contain very few drugs. A statistical classification tecjud can be used to extract the knowl-
edge from the databases to decide whether a given compodnati®r non-drug.

Gillet and Bradshaw [65] used structural features (inaigdiumber of hydrogen-bond
donors and acceptors, number of rotatable bonds, numbesrogdic rings, molecular weight)
and a shape descriptor. Compounds of the WDI and SPRESIatatslvere analyzed with a
genetic algorithm to derive a weighting scheme, which dates the drug-likeness of a given
compound. Ajayet al.[5] used MDL keys (see Section 18.3.2), in addition. Theyligpboth
decision trees and an artificial neural network (ANN) forssification, trained on the MDDR
and ACD databases. Sadowski and Kubinyi [175] also useddxfteevard neural network.
The classification scheme was trained on atom type desrsiptaompounds from the WDI
and ACD databases.

Support vector machines (SVM) can also be applied to the/damgdrug classification
problem. In a comparison of SVM to neural networks, Byvagbal. could obtain slightly
more accurate classifications on the same data as used in Qv&rall, the predictive power
of the methods presented so far reaches a typical 80 % dygrdassified test molecules.
Recently, Muller and coworkers [144] were able to redueedtvor rate to 7 % in a blind-test
using SVMs. This performance was achieved by careful moglekcon after comparison
of several learning methods. In summary, the results shawattcurate drug-likeness filters
can be constructed which use the knowledge on drug-likesteained by medicinal chemists
over decades.

The technique presented can be tailored to specific scrgpnitlems. Thus, not the phe-
nomenon of drug-likeness is assessed but the likelihoodlofigto belong to a certain class
of compounds. Ajaet al. [4] used neural networks to classify ligands regardingrtii®lS
activity while Manallacket al. [130] used them to screen for candidates binding to kinase
and G protein-coupled receptors. More recently, Briem aidt& [23] presented a SVM
method also for 'kinase-inhibitor likeness'. All thesegat-specific drug-likeness classifica-
tion techniques have a prediction accuracy of about 80 %s;Tihthere is a sufficient number
(several hundred) of compounds of a certain class avaitabteaining set, machine learning
techniques can be trained to predict the likeness to be aicénhibitor with high accuracy.

18.2.4 Molecular diversity

Compound collections, especially those in pharmaceuticaipanies, contain many series
of analogous compounds. It is desirable to screen for onlybaet of ‘'maximally diverse’
compounds, reducing redundant structural informations diverse subset is hoped to cover
the range of chemical structures and physical propertiasstafficient extent. Unfortunately,
there is no generally accepted single definition of sintifaor dissimilarity for this purpose
[114]. Thus, selecting a set of diverse compounds can be@meed in a number of ways.
These differ not only in the method but also in the selectidgteica used. These techniques
have been reviewed on several occasions [1, 39, 126].

Among the methods for selecting diverse compounds, ciagtenethods can be consid-
ered as the standard technique. For clustering, descifsfee Section 18.3.1) are calculated
for each compound. Then a cluster analysis algorithm dévalgroup of compounds into
clusters. Compounds within a cluster are similar and comgstrom different clusters are
dissimilar. After clustering of a library, a representatimolecule is taken from each cluster
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to belong to the diverse compound collection. For clustedahchemical libraries, typically
methods generating disjoint clusters are used in which eeacule belongs to a single clus-
ter only. Both, hierarchical [9, 211] and nonhierarchi@l3] methods, have been applied.
Evaluations of different clustering algorithms demoristithe better performance of hierar-
chical clustering methods for several test cases [12, 24 NGve implementations of hierar-
chical clustering need an initid¥ - N similarity matrix and have space and time complexities
of O(N?) andO(N?), respectively. By use of the minimum variance method (akited
Ward'’s method) [206] which aims on minimizing the total \@nte of a cluster, however, a
computationally more efficient implementation is poss[ti#6], having space and time com-
plexities of O(N) and O(N?2), respectively. For large numbers of compound¥s & 10°)
hierarchical clustering is not applicable. Instead nagrdnichical clustering (e.gK-means
clustering [139]) is used. For these algorithms the timeplewity for K generated clusters is
O(K N) per iteration for efficient implementations. For descops of clustering algorithms,
see also Chapters 25 and 28.

A different approach on selecting diverse compounds isigealbby partitioning methods.
These use a low-dimensional property space, each propgngsented by a continuous num-
ber that is categorized into a discrete set of value rangesyifig a set of cells in property
space [37, 125]. Compounds from a library are then partiidnto these pre-computed cells.
Two special kinds of descriptors, BCUT descriptors by Rearl and Smith [155] and phar-
macophore keys by Davies [38] can be used for partitioniregribal property space. BCUT
comprises molecular descriptors based on the eigenvafuesnatrix representation of the
molecules. These descriptors are designed specificallgfineda low-dimensional property
space. For the description of the properties, axes are phlogaespan property space in such a
way that the compounds exhibit maximal variance along tles axad compounds are evenly
distributed in property space [155, 156]

Davies [38] developed ChemDiverse, a program using phavptaire keys for the selec-
tion of diverse compound sets. The basic idea is to calcthat@harmacophore key for the
first molecule, add the molecule to the diverse compound:tefe and store the pharma-
cophore in a list. Subsequently, for the next molecule inlitirary, the pharmacophore keys
are calculated. If this molecule has a pharmacophore keyetaepresented in the list, the
molecule is added to the selection.

A completely different attempt to find diverse compoundsyigitssimilarity-based com-
pound selection. Among them, maxmin by Lajiness [118] istnused. The maxmin algo-
rithm first selects a compound randomly and adds it to thesete Iteratively, the compound
most dissimilar to the already selected set is identifiedaukd to the selection, until a de-
sired number of compounds has been found. A stochastiona@atiSim has been proposed
by Clark [32]. The initial random compound is compared totao§é other randomly chosen
compounds. Here, only compounds with a dissimilarity gre#fian a defined threshold to
the already selected compounds are considered. The meshilis compound among the
K compounds is added to the selection. In the next iteratioavaset of K candidates is
generated and the process continues.

Taylor [187] proposed a method based on the stepwise elilninaf the most similar
molecule from the collection. Initially the similarity nrat between all molecules is calcu-
lated. In a stepwise fashion, the two currently most sindanpounds are identified, as long
as there is more than a single compound left.
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While diversity is desired in initial screening runs for idiication of hits, once a lead
is found, compounds should be similar to the lead, i.e. thety should be 'focused’. The
clustering and partitioning methods can be used directlgémeration of focused libraries by
switching the selection criteria from one of each kind tao@lbne kind.

18.3 Ligand-based virtual screening

The methods of ligand-based VS can be divided into two ctas€@ne class of methods
tries to match compounds with identical parts (substrigcturpharmacophore) as the active
molecule. For these methods, initially, a number of activéarules are analyzed for a com-
mon substructure or pharmacophore, which is then used foclseg exact matches. The
other class tries to find molecules which are 'similar’ to @kn active molecule. The under-
lying assumption is that if a molecule is structurally semjlit has similar properties, binds
in a similar binding mode, and exhibits similar activity.i$lassumption is known as 'similar
property principle’ [40, 87] or 'neighborhood behavior§3]. Methods for similarity search
are applicable if only a single active compound is known. dntcast to substructure and
pharmacophore searches, the compounds are not onlyqagtitivith regard to whether they
are matching the query or not. Instead, a complete rankingwipounds according to their
similarity scores is obtained. Similarity — like dissimity — is not clearly defined [114]
and there are some remarkable exceptions from the simitgyepty principle [114, 131].
Nevertheless, similarity search is the most widely usechotein VS and numerous similar-
ity measures have been developed [181]. Figure 18.3 ifitetrthe most common similarity
search techniques, detailed below.

The actual methods for defining molecular similarity in thntext are quite diverse.
Often these methods are classified as one-, two- or threerdiimnal, depending on the type
of molecular representation used. In this section we foeushose methods first, which
use the information of a single reference molecule. Thehriguies that need a set of input
molecules are discussed. The latter are also often usetidaredection of compounds from
hitlists. These techniques are described in Section 18.4.

18.3.1 Descriptor-based similarity measures

Similarity search methods have been used for a long time fig€htestarted with counting the
numbers of substructures common to a pair of molecules [PZ]. ZThis figure provides an
initial effective way of quantifying similarity between nezules with very low computational
cost. Since then, it became a standard retrieval technajushEmical databases.

Methods for calculating quantitative measures for thelsirity between a reference mol-
ecule and a set of molecules have been studied in detail (8lett\&t al.[211] and references
therein). Common to all these techniques is the requiremogmtovide a set of attributes of
the molecules being compared and a similarity coefficienpgrovide a quantitative numer-
ical measure for similarity between the molecules. Theviiddial importance of different
attributes (e.g. logP, molecular mass, presence of fumatigroups, ...) has to be accounted
for by definition of a weighting scheme.
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Figure 18.3: Comparison of common ligand-based screening techniqeestést for details). (A) Ex-
ample molecules: Flavonoid moleculk (est molecule) and a known binder (CGS-9886reference
molecule) for the benzodiazepine site of the GABPeceptor [89]. (B) Bitstring generation and compar-
ison. (C) Generation and comparison of Feature Trees. (E)paoison by molecular superimposition
using FlexS (center top: molecular interaction surfacester bottom: molecular volume represented
by Gaussian functions. (E) Comparison of both moleculespisceamacophore model (center).
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Many different similarity coefficients have been proposethe literature. Some are mea-
sures of dissimilarity, while others measure similaritsedtly. In this review, we focus on the
most widely used similarity and distance coefficients omgre details can be found in an-
other review [8]. One of the most frequently used distancasuees is the Euclidean distance
Dfuglidean phetween two moleculed and B described by properties ...z,,. For continuous
property variables, the distance is defined by

n

= Z (Tig — $i3)2- (18.1)

i=1

FEuclidean
DA,B

The most often used similarity measure is the Tanimoto cc:ielfﬁSfjg”'moto. This coef-
ficient can be interpreted as the fraction of the number dfifes present in both molecules
divided by the number of features present in at least oneso€timpounds. For continuous
variables it is defined by

. Zn_ T Tj
Sz;agzmoto — i i=1 "tA7B . (182)
’ 21"11 xl{; + E:l:l 'T'zZB - Z’lnil TigTip

Willett et al.[212] assessed the performance of several distance andrsiyntoefficients
for predicting a measured activity value. The Tanimoto ficieht was performing best and,
since then, it has become the 'standard’ coefficient for ébainsimilarity comparison. Fur-
thermore, this coefficient was shown to be the most apprgpida similarity searches in 2D
databases [212].

In order to compare two molecules in a quantitative fashioimerical values of attributes
of the molecules are needed. The term 'molecular descriptitasummarizes all numerical
representations of chemical information about molecul#ained by a defined mathematical
procedure. As example, the molecular descriptor 'moleautdaght’ is defined exactly as the
sum of all atomic weights of a molecule

Natoms

MW= )" m;. (18.3)
i=1

The number of different chemical descriptors which havenb@®posed for the field of
quantitative structure-activity relationships (QSARYArS is large (several thousands are de-
scribed in detail in the handbook by Todeschini and Consfrg#]) and an extensive discus-
sion is out of the scope of this review. However, some desmshave become very important
in VS. Among them, logPM W, and molar refractivity are typically used in the preprezes
ing of libraries (see Section 18.2.2). BCUT descriptorsiegeful in diversity analysis (see
Section 18.2.4). A second important class of descriptagshérstrings, used in molecular
similarity search, as detailed in the next Section 18.3.2.

18.3.2 Bit string descriptors

For VS the most popular descriptors are based on binary rgetso called bit strings). The
idea of using binary vector representations has its origichemical database systems. Bit
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strings are used in substructure queries to efficientlyadiséarge fractions of the database,
before subsequently a much slower subgraph isomorphisariti is used. The length
of the bit strings varies from roughly a hundred bits [2189,2220] to several million bits
[136], depending on the type of information stored. The twashwidely used approaches are
substructure keys and hashed fingerprints.

Substructure keys (MDL keys available from Elsevier MDLtph¥www.mdli.com/) and
BCI structure fingerprints available from Barnard Cheminé&brmation Ltd. (http://www.bci.
gh.com/)) represent a description of the substructuresepten a molecule (Figure 18.3 (B)).
Within the binary vector, each of the positions is 1, if theregponding substructure is present
in the molecule, 0 otherwise. All substructures for the ting are predefined in a fragment
dictionary. Entries can encode the presence of certainsatern. there is at least one N present
in the molecule) or common functional groups (e.g. estection). Furthermore, electronic
(e.g. O with double-bond) and structural features (e.gnsmbered ring) are described by
bits.

In hashed fingerprints (Daylight Chemical Information 8yss, Inc., http://www.daylight.
com/), substructure information is encoded by an algoritAthpossible paths of atoms and
bonds through the 2D formula of the molecule, up to a certaitam path length are gener-
ated by systematic search, e.g. for a path length of thregettineC=C-N-C. These patterns are
then converted to integer numbers and hashed. The hashsgdaérated using these num-
bers as seeds for a pseudo-random number generator,mgsalthe fingerprint of this path.
The advantage of hashed fingerprints is their applicakiditgny type of structure without the
need of a pre-computed fragment dictionary. A disadvaniatie possibility of the same bit
string being calculated from different atom paths which megult in false positives, since
these hash conflicts are not solved. Unity available fromdsi(http://www.tripos.com) uses
a combined approach of substructure keys and hashed fiigsrpr

For the use with binary variables, the two similarity coeéfits from above can be refor-
mulated. Ifa denotes the number of bits set (to 1) in molecd|é for moleculeB, andc the
number of bits set in both molecules, the Euclidean disthecemes

pEuctidean — \ /T 9¢ (18.4)
and the Tanimoto coefficient is given by

Tanimoto c

Sa's = Th_c (18.5)

The substantial advantage of linear descriptions for chalstructures is their speed. The
counting of numbers of bits set,(b, ¢) can be done computationally very fast, resulting in
several hundred thousand molecule comparisons per mihhig allows for fast comparison
of millions of compounds in minutes to hours. A disadvantafjthe methods described so
far is that they cannot detect the similarity between two pounds, which behave similar
with respect to binding to the target protein, but are stradly quite different [35]. Thus,
the techniques cannot find a scaffold different from thefstdifof the reference molecule
(scaffold-hopping).
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18.3.3 Feature trees

Feature trees [166] comprise a class of descriptors whielinabetween the classical linear
descriptors described in Section 18.3.1 and molecularrsupesition techniques (Section
18.3.4). In this technique (Figure 18.3 (C)), a moleculedsatibed as a tree, that represents
its overall topology. Nodes of the tree represent fragmehthe molecule. The nodes are
connected by edges if the fragments are also connected hietdbonds or sharing of atoms.
A set of features is assigned to each of the nodes, repraggaitysicochemical properties of
the respective fragment. Steric features comprise the puwfatoms in the fragment and
the approximated van der Waals volume. Chemical featurdsde the interaction profile of
the fragment, i.e. whether it acts as hydrogen donor or aecép an aromatic ring, and also
represent the hydrophobicity of the fragment.

Similarity between molecules is calculated by matchingwwecorresponding trees, while
preserving their topology. A similarity score quantifies tjuality of the fit. The advantage
of feature trees provides a more accurate description ahifa properties than by linear
descriptors. However, the tree matching procedure is slalue to the higher computational
complexity of the tree comparison. Typically, thousandsnofecules can be compared per
minute.

18.3.4 Molecular superimposition approaches

Molecular superimposition techniques structurally alilgoompound to a reference ligand in
three-dimensional space. During the alignment matchimts jd both molecules are placed
on top of each other. The large variety of algorithms for roolar superimposition has been
reviewed by Lemment al.[123]. The application of superposition techniques for \&S hlso
been reported [121].

In general, the molecular superimposition can be achienad/® ways: Either a field-
based approach is used, in which properties of the moleeuteprojected onto a common
surface or into three-space. The other method aligns pGatems directly. Early approaches
achieved this goal by rigid-body superimposition. Neweaygsams can handle one or both
molecules as flexible on the fly. Nevertheless, the rigidyltedhniques are much faster and
are thus often preferred. An intermediate technique is tiress molecular flexibility by
considering a set of alternative conformations of the mdkec

A rigid-body superimposition program reads a referenaaiijand a test ligand, then per-
forms an optimization of the position and orientation oftié&t ligand in space. Early attempts
using combinatorial approaches to enumerate efficientbgipte matches (correspondences)
of chemical features of the two molecules [91, 133] are tanmate-time intensive. With the
program SEAL (Steric and Electrostatic ALignment) [92] dater enhancements [98], for
the first time, Gaussian functions were used for descrilliirgohysicochemical properties of
the molecules and a new algorithm was applied to tackle thié superpositioning problem
efficiently. The description of chemical features by Gaars$unctions has several advantages
[68]. First, a Fourier transform of a Gaussian is again a Gans Second, there is no bound-
ary which helps in the initial steps of alignment. Furthermalerivatives can be calculated
easily (even symbolically), and finally, the overlap betwé&o Gaussians increases when
their maxima approach each other. An improvement of thechesigorithm was proposed by
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Lemmenet al.[120] in their program RigFit. The optimization is split intwo independent
optimizations for rotation and translation. Thus, onediixensional search is separated into
a sequence of two three-dimensional searches.

Current state of the art are programs for flexible superjoositg of two molecules. Sheri-
danet al. [180] uses distance geometry for superposition, while étaal. [86] proposed a
technique, in which all possible matchings between phaopiaaric points are evaluated in
a combinatorial matching. For both techniques, still théniéon of the pharmacophore is
needed as prerequisite. The combined Monte-Carlo and ymergmization based tech-
nique by McMartin and Bohacek [137] also needs manual ietgign. The program GASP
[88] was the first method available that was able to handlesthectural flexibility of both
molecules involved and was not constrained by predefinedioekhips between functional
groups assumed to be similar. GASP is based on a genetidgthfgarhich mimics the pro-
cess of evolution. The conformations of each molecule ardctirrespondences between
intramolecular features are coded via so-called chromesonm order to modify the super-
imposition, the chromosomes are subjected to the opesatibmutation (local changes) and
crossover (splitting and merging of two chromosomes). Aybaipon of chromosomes is re-
peatedly subjected to these modifications and then evalwatk a fithess function. Only the
fittest chromosomes survive to the next round. The fitnesstifiomused in the selection pro-
cess of each superposition is calculated by volume overgrsmolecular matching energy
and the conformational energy.

A different technique for superposition, FlexS, uses im@atal construction [122]. Here
the reference molecule is handled as rigid, the test maddsiflexible. The test molecule is
partitioned into fragments which are connected by rotatdoinds. A number of relatively
rigid fragments is selected and aligned to the referenceecote. Then the next fragment
is attached to the previously placed fragment in all allow@dion angles. The list of ad-
missible torsion angles is derived by statistical analys] of the Cambridge Structural
Database (CSD) [6]. All generated placements are scoredabbgdbintermolecular interac-
tions and overlap, the latter being described by Gaussiaatifins (see Figure 18.3 (D)). The
best partial solutions are subjected to the next increrhentestruction cycle until the com-
plete test molecule is build up. The mean computing time ihé@order of 30 seconds per
superpositioning for typical test cases.

Krameret al.[107] developed fFLASH, using a fragmentation-reasserapfyroach. The
tool is based on earlier work on FLASHFLOOD [164]. fFLASH debes the query molecule
as rigid, the test molecules are handled flexibly. All testanoles are partitioned into frag-
ments by severing rotatable bonds, expanded to a set of moafions, and all conformers
stored in a database. Pairs of adjacent fragments are jaimebd set of conformations of the
fragment-pair is generated by varying the dihedral angtéetonnecting bond. Molecular
interaction features are then calculated and stored inkafotable. By use of a clique detec-
tion algorithm, patterns of features of fragment-pairshef test molecule are geometrically
matched on the reference molecule. These matches are seb#iggoined, based on the
pairwise compatibility of two matches, by a graph-algarith
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18.3.5 Pharmacophore searches

A pharmacophore is usually defined as a set of molecularfesand their rigid spatial ar-
rangement, which is necessary for ligand-receptor binffi8fy A pharmacophore is typically
composed by three to four pharmacophoric centers and #spective distances (Figure 18.3
(E)). Pharmacophores are applied in three-dimensionabdat searches after they have been
determined from a set of active ligands. In VS, pharmacoghoan also be used as constraints
in structure-based screening. Pharmacophores can alss #utee-dimensional descriptors.
Often pharmacophores are encoded in the form of bitstrikmgsyn as pharmacophore finger-
prints, which are directly applicable for screening (seeti6a 18.3.2).

In ligand-based VS, the true pharmacophore is unknown argt beidetermined first.
Pharmacophore perception is closely related to moleculagrpositioning, for example, the
program GASP [88] can perform both tasks. Neverthelessegire programs of both groups
are tailored to their specific research areas they are testcseparately. For automatic deter-
mination of a pharmacophore hypothesis a set of activedigas training set is needed. The
pharmacophore perception is then performed in a numbeepsstrirst, three-dimensional
structures of the molecules must be generated with one ah#thods described in Section
18.2.1. Then the molecules are analyzed in order to ideatiyns that can interact with a
protein in a characteristic way. Commonly these pharmaadpfeatures are acidic and basic
groups, hydrogen acceptor and donor sites, aromatic, adiplyobic groups. In the next
step, conformations of the molecules are passed to the picaphore perception algorithm.
Here, conformations of the molecules are compared in ocdiglentify pharmacophoric fea-
tures common to all molecules. A number of programs have beerloped for pharma-
cophore identification [73], among them the commerciallgil@ble tools Catalyst/HipHop
[33], DISCO [132], and GASP [88]. For a recent review and a parison of these three,
see Patett al. [152]. These programs differ with respect to how the conftions are han-
dled and how the molecules are aligned and compared. GASPaugenetic algorithm (see
Section 18.3.4) to describe the molecules as flexible. DISE€> a set of low-energy con-
formations which are kept rigid throughout the calculatma a clique-detection algorithm is
used for rigid-body alignment. Catalyst/HipHop also usestaof rigid low-energy conforma-
tions of the molecules but then performs a pruned exhaustiaech to identify configurations
common to all molecules. Once the pharmacophore is idettifican be used to screen a
three-dimensional database.

An extension of the ligand-based pharmacophores descsibéat, is the use of structural
information of the receptor for pharmacophore generatidwo recent examples of these
structure-based pharmacophores are the works of Wolbdramgker [214] and Griffittet al.
[72].

18.3.6 Quantitative structure-activity relationships (QSAR)

The structure and the physicochemical properties of a mtdecan be used to model its
biological activity. The mathematical description of thédationship in a quantitative way is
the aim of QSAR techniques. In order to model structurevagtielationships, first, for each

compound in the library a number of molecular descriptokeha be calculated. In a second
step, a quantitative relationships between these destsiphd the activity is derived. This
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section covers only some selected techniques from the ffe@S#AR which has grown in
terms of using more and more sophisticated descriptorslandreore sophisticated statistical
tools for finding correlations between structure and atstivi

The classical technique is Hansch analysis which corebatgvity with physicochemical
properties by use of regression analysis. Haretchl. [77] described the dependency of
the concentratioi’ needed for a certain biological response in terms of thedpitbbicity
(expressed by the logP value) and electronic effects (usiegHammett constart) by the
equation

1
loga =ky -logP + ko - 0 + ks. (18.6)

Here, thek; are the coefficients to be fitted by the regression. Usingtyipie of QSAR anal-
ysis, today, several thousand successful applications haen reported and a database of
QSAR equations is electronically available (http://wwgsar.com/medchem/chem/qgsar-db/).
The descriptors applied include steric, electronic, ardrbghobic effects as well as indicator
variables. These values are obtained either by computdigpien techniques or experimen-
tally. Due to the large number of descriptors available tepethdency between them has to
be studied in order to find the relevant ones. This "featukectien” is usually done based
on Principal Components Analysis (PCA) [61] or its extendfartial Least Squares Analysis
(PLS) [82].

An extension of the classic approach was the introductiahrefe-dimensional informa-
tion of the ligands to reflect the geometry of their bindingegeptors, including their chi-
rality. The first of this 3D-QSAR techniques was the Compegatiolecular Field Analy-
sis (CoMFA) [34] which turned out to be very successful (margmples can be found in
[113, 111, 112]). In CoMFA a set of molecules is selected Wwliiave an identical binding
mode, i.e., they bind to the same site in the same relativenggg. To derive the CoMFA
model, for all training set molecules, first, partial chargee assigned and low-energy confor-
mations are generated. Then the molecules are aligned f aggharmacophore hypothesis
and positioned inside a 3D grid. For each grid point and feheaolecule separately, field’
values (interaction energies) are calculated for chargediacharged probe atoms. Finally,
PLS analysis is used to correlate the fields with biologicaivay data. The result of this
analysis is typically represented as a set of contour mapwisly favorable and unfavor-
able regions for certain substituents. Several technifaes been proposed to obtain better
fields. By calculating fields with GRID [71] or HINT [94] morefterent probes can be used
which allows modelling of a wider range of interactions. Bplacing CoMFA potentials with
SEAL (see Section 18.3.4) similarity fields (Comparativel&alar Similarity Indices Anal-
ysis, CoOMSIA [99]) the results become more stable. A freqpeoblem for PLS can be the
high number of noise variables not contributing to the dpsion. With GOLPE (Generating
Optimal Linear PLS Estimations) [10] the meaningful vahégbcan be selected and the pre-
dictive ability of the model is checked by cross-validatiércause of error for COMFA, CoM-
SIA, GRID/GOLPE and related techniques is the mutual aligntof all molecules. There
are methods available that retain the 3D information butirdependent of the alignment.
Examples for these techniques are WHIM (Weighted Holisticatiant Molecular indices)
[188], which uses the moments of atomic properties as descsi, and the related technique
MS-WHIM [21], which uses molecular surface points inste&the atoms as descriptors.
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In the classical 3D-QSAR methods described above, onlynmétion on the geometry of
the ligands is used. In 4D techniques multiple conformatimmorientations of the ligands are
considered simultaneously. It is even possible to inclmdiermation on the protein structure
to which the ligands are bound in the QSAR model. The prograas@r by Vedaret al.[195]
is a method which constructs a receptor-surface model addds between 3D-QSAR and
receptor modeling, taking induced fit into account. Cutsgntultidimensional QSAR studies
are extended up to six dimensions to allow for the simultasemnsideration of different
solvation models [194].

18.3.7 Other techniques

The interaction of a ligand with a target molecule can be rilesd in terms of the respec-
tive molecular surfaces, that have to be complementarymsitpect to both physicochemical
properties and shape. Finding optimal surface complemgnisithe main aim of docking
procedures (cf. Chapter 16). Thus, the comparison of @iffdigands in terms of their molec-
ular surfaces and the properties mapped to them is a valsahilarity criterion.

Among the many techniques of molecular surface comparisenfocus on the recent
graph-based method SURFCOMP of Hofbaeteal.[79] and the gnomonic projection method
[17] as examples. The comparison of two surfaces, eachideddyy a point set in three-space
is not an easy task. The problem can only be solved efficidginthe surface model is sim-
plified. In SUFRCOMP, first a representation of the surfageoxierlapping circular patches
is calculated. Then the centers of these patches, repiegenitical points, are reduced in
number using a number of filters and matched via maximal comsubgraph comparison.

Blaneyet al.[17] use gnomonic projection of the molecular surface prid@gonto equi-
spaced points on the surface of an enclosing sphere. To dbesppints in space at which
vectors from the sphere’s surface to the 'center’ of the mdke cut the molecular surface
are calculated. The physicochemical properties on theotitfarthest from the 'center’ are
then projected onto the sphere. The comparison of the giofescof two molecules is then
performed after mapping of the property values on two dirioerss

A different type of measuring similarity between molecukethe use of 'virtual affinity
fingerprints’ [124, 208]. In the Flexsim-X method by LessabaBriem [124] ligands are
flexibly docked into a carefully selected reference set ofgin binding sites using the FlexX
docking program [165]. The highest-ranking solution oftedocking run is selected. The
virtual affinity fingerprint of a ligand is then defined as thector of docking scores obtained
for the different binding pockets. Molecules are comparngthle Euclidean distance between
their affinity fingerprints. The technigue was shown to detealecules with similar biological
affinity without prior knowledge of the target protein sttwee. An extension of this work to
calculate similarities of functional groups is Flexsim-F8].

18.4 Post-processing of hitlists

HTS or VS runs of a compound collection with up to millions oftrges results in a huge
volume of data. The obtained list of hits is rather crude agebis substantial clean-up. There
are a number of computational methods for the post-pratgssid analysis of screening
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data. First, the output is simplified by removing data powlere the screening failed (e.qg.
no docking solution, failure during experiment). Herepalata not needed in post-processing
(e.g. intermediate results, log files) are discarded. Skdbe most promising hits have to be
selected mostly on the basis of their rank in the hitlistsyoctiteria based on the scores, in
order to reduce the dataset to manageable size. To idesatifislamong the screening data is
a challenging problem, addressed by a number of differempetational methods. The often
concealed information can be extracted by data mining phaes (Section 18.4.1). A general
problem of screening data consists of false positive resikpecially for results of structure-
based VS runs, some techniques have been developed tdyderdidiscard false positives
(Section 18.4.2). Whenever a combination of different téghes is used in screening, each
technique result in a different hitlist. Here, consensahméjues help in picking hits (Section
18.4.3). Nevertheless, the most important method is &#llvisual inspection of the results
by an experienced medicinal chemist, assisted by visugliztools (Section 18.4.4).

18.4.1 Data mining

A common approach for mining hitlists is the search for faesilwith similar chemical struc-
ture among the active compounds. Here active compoundegggcare those with high affin-
ity, high scores, or high similarity after screening. Cheahifamilies can be identified by
grouping the compounds with similar chemical structure haroical family is characterized
by a common scaffold. Substructure search among the resultbe applied to identify these
families. Robertet al. developed LeadScope [171], a structural classificationrigeie. The
method classifies compounds into a collection of predefiteninical families. The prede-
fined families are arranged hierarchically, starting withaor structural class on top, which
is subdivided further. For example, a 3-methoxy-pyridieétive, is found in the pyridine
— pyridine, 3-R— pyridine, 3-alkoxy class of the hierarchy. For each striadtciass, activity
data and frequency in the data set is depicted in an intuigweplot.

As an alternative, techniques for similarity search (2ecli8.3) can be applied to identify
families. In this case, the families are defined by a high ee@f similarity. For grouping
the families, often clustering techniques are used (agitestin Section 18.2.4). Due to the
importance of hitlist mining, a number of dedicated clusigtechniques have been developed
[49, 185].

Another approach to data mining using classification tempins is recursive partitioning
(RP) [173, 221]. RP is a nonparametric classification tegpimi(as opposed to the many
parameters in QSAR models), in which the whole set of comgsumrecursively classified
into disjoint subsets using statistically determinedsul@a this manner, a tree is constructed,
in which some terminal nodes (leaves) are enriched witlvestiwhile other leaves contain
mostly inactive molecules. If the path from a leaf with aesivs traced back to the root node,
the molecular descriptors used for partitioning at the imales can be used to characterize
or to search for actives.

Nicolaouet al. developed a classification method using a phylogenetecthiée (PGLT)
[147]. This tree is constructed using a combination of téphes. Each node has bins for
active and inactive compounds. First, all active molecalesstored in the active bin of the
tree’s root node. Then, in an iterative fashion, a clusteghthe molecules of the current
leaf is performed, using a criterion based on chemical dg@scs. In a next step, cluster
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level selection is performed to select a set of 'naturalstdus. Each of the natural clusters
is then subjected to a maximum common subgraph (MCS) se&ommon substructures
are evaluated by a set of rules to evaluate each and to diaiatse, not providing new
knowledge. The rules, for example, discard substructuready found in other nodes or
those identical or subsets of the parent node. Then, for efitte remaining substructures,
all molecules from the parent node containing the respeMi€S are added to a newly created
tree node. Finally, a node is selected at which the itergtimeeeds. After the actives have
been used to construct the tree, a post-processing prazedperformed in order to prune
the tree and reduce it to contain only nodes with structytadimogeneous families. This is
done by adding inactive compounds to the inactive bins off@&T using the substructure
rules derived with the actives. For each node, the simjldxétween actives and inactives is
calculated and nodes with dissimilarities are eliminat&€te technique described has been
implemented in the program ClassPharmer (Bioreason S_AHRp://www.bioreason.com/).

18.4.2 Analysis of the protein-ligand interface

A particularly interesting type of strategy, which can bglégl to results of structure-based
screening, is the analysis of structural properties of twenbl protein-ligand complex. Al-
though this method also belongs to docking techniques (Baptér 16), we describe it here as
a representative example for an important class of postgssing technigues. Current scoring
functions favor the formation of many protein-ligand hygleo bonds and salt bridges, even if
the structures exhibit only limited steric complementaniterall due to holes along the inter-
face or larger parts of the ligand being exposed to the sal&tahl and Bohm [184] propose
a post-processing procedure of docking results. For a ggtredrated docking poses, first, all
poses with close contacts between polar atoms that do reptakin hydrogen bonds are dis-
carded. Then the fraction of ligand volume located insidedévity is calculated. Poses with
less than average buried volume are discarded. The sizpoghilic cavities at the protein-
ligand interface also acts as filter criterion: Poses exogdtie minimum value by more than
25A are discarded. Finally, the solvent-accessible surfac®opolar parts of the ligand is
calculated and used for rescoring.

Giordanettoet al. [67] also propose the use of solvent-accessible surfa@sar€hese
authors perform a classification of all receptor and ligatwina into classes, depending on
the physicochemical properties hydrophilicity, chargel bybridization. Then descriptors are
calculated that describe the energetic cost of burying thes In addition, conformational
entropy differences between holo and apo form of the pratedrcalculated. Here, an amino
acid-based conformational entropy contribution of theigiroafter Murphy and Freire [145] to
the binding affinity is used. By use of these techniques,igffpredictions could be improved
on the cost of less accurate binding mode prediction.

Results from docking studies can also be analyzed by stalétieraction fingerprints as
proposed by Dengt al. [41]. These interaction fingerprints are a translation efgtructural
information of a protein-ligand complex into a binary vect@he technique can be applied
for identification and clustering of similar docking poses.
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18.4.3 Consensus techniques

The combination of several different computational methisdanother approach to reducing
the number of false positives and prioritizing moleculedtother study. Some of these meth-
ods are only applicable to structure-based techniquede whime use mixtures of different
computational methods, including ligand-based techrig&®eototype of the structure-based
methods in this field is consensus scoring [28]. Here, on&idggrogram is used to gener-
ate a docking pose. Then, the highest ranking structureeisahgated with different scoring
functions. If the compound is hot among the top-scoring conmals for all scoring functions
applied it is discarded. In a computer experiment by Wangvdadg [205] it has been shown
that hit rates improve significantly after consensus scpifithree or four scoring functions
are used.

Methods using not only different scoring functions but eiffint docking techniques go a
step further [154]. In the ConsDock approach, docking iéqrared with three different dock-
ing programs and a set of 30 top ranking poses is stored eotaiith each of them. Then
a hierarchical clustering is performed on each set and thleelsi-ranking pose within each
cluster is defined as its 'leader’. Consensus pairs are dkfimigere two of the docking pro-
gram result in similar leaders. Each of these pairs is theordeed by its mean and clustered
again into classes. Finally, the mean pose of the clustetghijgcted to re-ranking according
to the number of entries in each class.

The use of entirely different computational techniquesrvestigation of hitlists has been
proposed by some groups. Klon and coworkers [102, 103] usebination of docking and
machine learning. First, docking of a library is performeithvthree different docking pro-
grams. Then a naive Bayesian classifier is trained on thkinlpscores of the top-scoring
compounds, which are labeled as 'good’, if their score isepehan a threshold. The com-
pounds themselves are described by an extended-conhefitigerprint as structural descrip-
tor (Pipeline Pilot program available from SciTegic, hthpww.scitegic.com/). Application
of the Bayesian classifier for re-ranking the hitlists impd the enrichment in most of the
test cases, without argypriory knowledge of the activity of the compounds.

Especially in docking, the high-dimensional search spacebe explored a bit further to
re-rank hitlists. On the one hand, a multi-conformer dggizn of the protein can be used
[199]. On the other hand, not only the top-ranking pose buérsg poses can be used for
calculating the score [104].

Ginnet al.[66] proposed the use of data fusion for combining molecsitailarity mea-
sures. In this procedure, a similarity search is performitial at least two different similarity
measures. The rank positions; of each individual structure in the hit lists are then coneloin
to a new score. With the fusion rulg; , r; the performance is at least as good as the best
individual measure.

18.4.4 Visualization

For the simultaneous display of screening-result dataviers¢dimensions, a number of tech-
niques are available [3, 63, 116]. The techniques have lmepleinented in several tools for
display of screening data using highly sophisticated gigblalata representations for visual
data mining (DecisionSite (Spotfire, Inc., http://www.Hpre.com), ClassPharmer (Biorea-
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son S.A.R.L, http://www.bioreason.com/), LeadNavig&td®©ON Bioscience AG, http://www.
lionbioscience.com/)). Results are plotted in multiplmensions, combining data from differ-
ent databases. The data points in the plots are linked tatinesponding chemical structures
and vice versa. This enables the medicinal chemists toifgigrdtterns within the results. A
technique for visualization of the multidimensional serieg data is the non-linear mapping
of the data to a lower-dimensional space with just 2 or 3 dsimn The usual techniques for
non-linear mapping is multidimensional scaling [110]. §téchnique aims at keeping points
close together in low-dimensional space if they are alseectogether in the original data-
space. With recent enhancements [2, 216], multidimensiggwing is applicable to large
screening data sets. Despite all efforts in visualizagmhhiques, it has been pointed out that
visual data mining tools are not applicable to extremelgdaand complex data sets [147].
Furthermore, due to their 'interactive’ approach, thesdstaannot readily be integrated into
fully-automated screening procedures.

18.5 Ciritical evaluation of structure-based virtual
screening

Nowadays a large collection of docking/scoring tools isilatée for high-throughput virtual
screening. Out of the flow of information generated over #st five years, a computational
chemist entering into a virtual screening project will héwenake a few decisions about the
screening strategy and the tools which are the most suitisl pooject. The first part of this
section is aimed at pinpointing some good practices in cxewroid classical failures. The
second part of the section will review some recent succesgstwhich could inspire the
reader for future work.

18.5.1 Influence of parameter settings

Several input parameters may affect the effectiveness & eud. Depending on the computa-
tional tool that has been chosen, the number of parametgrsanafrom a dozen to over one
hundred. It is therefore crucial to select the best possitget settings which unfortunately
are not always known in advance. However, a few robust guidsesd on current knowledge
can be derived.

Which library?

As reported above (Section 18.1.3), several commerciadlifable compound collections are
available. There is usually no reasons to favor one padiatdmpound collection over an-
other one. As most of them are easily accessible [11, 182]p#st possible approach for an
academic user is to start from a unified and filtered datagdt [@f course, corporate and
focussed/targeted libraries may also be used. They arieydarty interesting for screening
targets belonging to deeply-investigated families (eirgages, GPCRs) and containing a high
percentage of true positives.

Whatever the database selected, it is generally advisaltlewnsize the number of mol-
ecules which will be submitted to 3-D docking. Beside somednant filters (chemical
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reactivity (see Section 18.2.1), drug-likeness (see &eB.2.3), etc.), it is important to

remove molecules which do not fulfill simple 2-D or/and 3-Dapimacophoric features. This
simple strategy aids in dramatically reducing the numbg@aténtially interesting compounds
without losing many true positives [51, 129]. If one is simpliterested in setting-up optimal

screening conditions (e.g. discriminating a few true &stifrom randomly-chosen decoys), it
remains important to carefully set-up the test datasetdermoto avoid artificial enrichments

in true actives by making sure that chemical spaces coveredtives and inactives/random
compounds largely overlap [197].

Which ligand conformation(s)?

Most docking programs only requires a single low-energyaonation for each ligand of the
dataset, provided by automated 3-D converting utiliti€&s[ 11 76]. For docking tools requiring
a multi-conformer ligand library, it is important to starbf biologically-relevant conforma-
tions. Several studies agree to conclude that the mosbkelki@nformations are not necessar-
ily produced by the most accurate and cpu-demanding metiosife start is to use fast con-
former generators like Omega (http://www.eyesopen.comalipcts/applications/omega.html)
or Catalyst [33] which accurately sample the biologicatyevant conformational space for a
wide array of chemotypes [19, 70, 93, 96].

Which protein coordinates?

When screening a high-resolution X-ray structure, sewiepait coordinates might be available
describing either ligand-bound (holo) or a ligand-freedjastructures. A systematic survey
over nine enzymes unambiguously demonstrates that theftwoloif it exists should be the
first choice [19]. Furthermore, X-ray structures appeaié¢arty outperform the correspond-
ing homology models in discriminating known inhibitors finorandom decoys [134, 150].
However, if the sequence identity (on binding site-linirkgidues) to the X-ray template is
higher than 50 %, comparable enrichment rates in true itdribcan be found [150]. This en-
couraging results suggests that genomic-scale VS migledsetfle, provided that an accurate
description of the binding sites can be drawn from existinga}{ templates.

Which docking tool?

Starting from the pioneering work of Kuntz and coworkersgl humerous docking programs
based on very different physicochemical approximationgtieeen reported (see Chapter 16).
All docking tools combine a docking engine with a fast scgrfianction, and the recent liter-
ature is full of benchmarks addressing the accuracy of ofievodocking/scoring scenarios.
The three following issues are usually investigated: @ ¢apability of a docking algorithm
to reproduce the X-ray pose of selected small moleculagiidigands [93, 105, 159], (i)
the propensity of fast scoring functions to recognize medive poses among a set of de-
coys [56, 203] and to predict absolute binding free enerf§iék (iii) the discrimination of
known binders from randomly-chosen molecules in virtuakening experiments [36, 93,
159]. However, analyzing all these data for a comparatiadyais of available docking tools
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is very difficult. First, many tools are not easily availabBecond, independent studies assess-
ing the relative performance of docking algorithms/scgfimctions are still rare and focus on
the usage of few methods. Third, the quality judgment may dapending on the examined
properties (quality of the top-ranked pose, quality of #lysible poses, binding free energy
prediction, virtual screening utility). Fourth, most daaff programs assume approximation
levels that can vary considerably [74] and lead for exampheery inhomogeneous docking
paces ranging from few seconds to few hours. Last, many dggkiograms have been cal-
ibrated and validated on small protein-ligand datasetsicedetailed benchmarks (100
PDB-ligand complexes) are only reported for few dockind$d@8, 43, 108, 149, 151, 196].
The most recent validation studies on different datasatseatp conclude that the accuracy
of a docking tool is largely target-dependent [74, 96, 188]2nd should be examined on a
case-by-case basis. Glide and Gold seem to be the most pybgsams for their propensity to
generate near-native poses in ca. 75-80 % [96, 159], prdviae several solutions are stored.
A major problem is that the scoring function does not alwagslijtt the correct solution as the
most probable one (only in ca. 40-50% of the cases). Thisderably complicates the anal-
ysis of docking results. Numerous reasons explain thiddichaccuracy [93]. Some are easy
to correct (e.g. incorrect atom type for either the ligantherprotein), some are more difficult
(e.g. accuracy of the protein 3-D structure, flexibility b&tligand, accuracy of the scoring
function), and some are really tricky to overcome (prote@xifiility, role of bound water).
The accuracy of a docking program to predict the proteinAlddigand pose is reflected in its
virtual screening efficacy, that is the ability to discriraia true binders from inactives and/or
randomly-chosen compounds [36, 93, 159]. However, priedjethich docking program will
be the most suited for a research project is still problesn#tknown ligands are available, a
pragmatic approach is to try a systematic combination okihggscoring parameters and se-
lect for productive screening the one that best segregatesttives from true inactives. If no
or very few ligands are available, some guides may be folibtwechoose the tool that seems
the most appropriate regarding the physicochemical ptiggesf the protein cavity [93].

Which scoring function?

The scoring function still remains the Achilles’ heel ofigtture-based virtual screening. Sev-
eral recent and independent studies conclude that mangdashg functions can indeed dis-
tinguish near-native poses (rmsd lower than 2.0 from thaypose) from decoys for ca. 70 %
of high-resolution protein-ligand X-ray structures [5®3 However, when docking is ap-
plied to a large database, the corresponding scoring famstiould be robust enough to rank
putative hits by increasing binding free energy values.[@Ffifortunately, an accurate predic-
tion of absolute binding free energies is still impossibleatever the method [36, 56, 204].
Predicting binding free energy changes is possible at thdition that a customized scoring
function is applied to a series of congeneric ligands. Hawrefor a database containing a
large diversity of compounds, and for targets which havebeen traditionally used for cal-
ibrating scoring functions, the obtained accuracy is ugumhited (ca. 7 kJ/mol or 1.5pK
unit) [75]. From this observation, two sources of improvetrere possible: (i) design more
accurate scoring functions [204], (ii) design smartertegis to post-process docking outputs
(see next section). Many computational chemists actuallgrfthe second option. The accu-
racy of scoring functions has levelled off several years &gothe simple reason that some
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unknown parameters (e.g. role of bound water, protein fiityipremain extremely difficult
to predict whatever the physical principles used to derigeaing function.

Which post-processing?

Acknowledging that scoring functions are far form beingfeet; the easiest way to retrieve
true positives from a virtual screen is to first detect falesifives. Many strategies are pos-
sible. The simplest consists in rescoring poses with amfthtiscoring functions; hoping that
a consensus scoring [15, 28] will better identify true hitgp¢ranked by several scoring func-
tions) from decoys (see Section 18.4.3. Comparing hit faédween simple and consensus
scoring should however be realized on hit lists of compeeaize [217]. Moreover, customiz-
ing a consensus scoring scheme requires first the knowlédgeeral and chemically-diverse
true hits. Such data are not always available. Thereforedefs well-investigated targets,
other strategies have to be designed. Topological filterdeaused to filter out poses exhibit-
ing steric or electrostatic mismatches between the ligaddta target [184]. Poses can also be
minimized by a more accurate force field [90, 186], hierazahy clustered [154], analyzed by
Bayesian statistics [103]. In any case, the post-procgs$statment should be simple enough
to be reproducible for a wide array of targets. The influerfckfferent post-processing strate-
gies on the hit rate and the percentage of true hits recovegtbwn in Figure 18.4. In this
figure, the top-right corner with a hit rate of 100% and alkthits recovered would be the
optimum.

An alternative strategy for post-processing is to look aialiment among true hits in
pre-computed substructures/scaffolds [147]. This prissdbe advantage of focusing more on
scaffolds and the distribution of docking scores among treard less on individual molecules.
The effect is evident from Figure 18.4, where the resultsuchsa post-processing are closer
to the optimal corner. Therefore, false negatives may bevered if they share a scaffold
with true positives. Last but not least; selected hits sthéwel browsed in 3-D target space for
the ultimate selection: no algorithms yet outperform thaof an experienced modeler for
such a task!

18.5.2 Recent success stories

Only recent reports from the literature (2003—2005) will&&ewed herein. Most of them still
make use of high-resolution X-ray structures (next thréeseations). However, encouraging
data begin to emerge from homology models (last subsedctithid section) and thus broaden
the application of structure-based screening methods taarvarray of pharmaceutically-
interesting targets.

Some privileged targets

Macromolecular targets presenting a well-defined hydiapocket for which the direction-
ality of intermolecular interactions play a key role in lighrecognition are particularly well
suited for virtual screening for the simple reason that rdosking tools and scoring functions
have been calibrated for such situations [56]. Thus, it isurprise that some protein families
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Figure 18.4: Influence of post-processing strategies in retrieving tasopressin V1a receptor antago-
nists by structure-based screening of a database of 990maydhosen 'drug-like’ compounds seeded
with 10 true actives [16]. 1) top 5% ligands as scored by FleXXop 5% ligands as scored by Gold; 3)
hits common to 1) and 2); 4) ClassPharmer (Bioreason S.A.Rttp://www.bioreason.com/) prioriti-
zation of scaffolds for which 60% of the representativeseha¥lexXscore lower thar22 kJ /mol; 5)
ClassPharmer prioritization of scaffolds for which 60% loé representatives have a Goldscore higher
than37.5; 6) ClassPharmer prioritization of scaffolds for which 608the representatives have a FlexX
score lower thar-22 kJ /mol and a Goldscore higher th.5.

(e.g. kinases) are overrepresented in targets for whiehihibitors have been discovered by
database docking (Table 18.1).

Protein kinases have been deeply investigated by strubased virtual screening [59,
83, 129, 158, 190, 191] to identify novel inhibitors for threajor reasons: i) kinases are
among the most relevant target families for the pharmacaluindustry, ii) a wide array
of high-resolution protein-ligand X-ray structures araiable for validation purpose, iii)
a canonical H-bonding to the so-called 'hinge region’ of kitease is a typical hallmark of
ATP-competitive inhibitors. Two recent studies [129, 1@t representative of the results
which might be expected for kinase inhibitors. Vangreugtieet al. reported a knowledge-
based virtual screening protocol for identifying caseindse Il (CK2) inhibitors, in which
post-docking filters were designed to downsize the hitli§1]. Starting from ca. 400,000
compounds which were docked using Dock4.01 to the 3-D straaif human CK2, 12,000
molecules were first retrieved by score. This primary hithias then reduced to 1,592 mol-
ecules by selecting only hits which were H-bonded to theghisegment’ of the protein and
well scored by a consensus scoring function. Visual chethefemaining hits afforded a hit
list of only 12 compounds out of which three molecules intgidithe enzyme with aiCsg
lower than 1Q:M.

Pre-docking filters may be useful as well in selecting the tnatgresting compounds
by similarity to known chemotypes present in kinase inloitsit A good illustration of this
strategy has recently been reported by Lytel. in the discovery of checkpoint kinase-1



18.5 Critical evaluation of structure-based virtual sanéeggy 27

Table 18.1: Successful structure-based screening data from the ritegature (2003—2005).

Target Docking Library Size Hit rate Ref.
Chk-1 kinase FlexX AstraZeneca 550,000 36%@uBB8 [197]
Casein kinase Il Dock Novartis 450,000 33%@ M [191]
BCR-ABL Dock Chemdiv 200,000 13%@ 3M [158]
p56 Lck Dock n.a. 2,000,000 17%@106M [83]
EphB 2 Gold Chemdiv 50,452 5%@ LOI [190]
Protein Kinase B FlexX Chembridge 50,000 10%@ua0 [59]
DHFR (S. aureus) FlexX Roche 9,448 21%@ 28M [215]
DHFR Dock ACDF na. 33%@ 2aM [167]
Aldose reductase FlexX ACD 260,000 55%@ (2a [106]
XIAP Dock TCM 8,000 3%@ pM [148]
Stat3s Dock 4 collections 429,000 1%@ 201 [183]
Ribosomal A-site RiboDock Vernalis 1,000,000 26%@p00  [58]
collection
IMPDH FlexX Roche 3,425 8%@1QM [162]
L-xylose reductase Dock NEI 249,071 5%@10pM [26]
PDE4D FlexX Combinatorial 320 55%@1001 [109]
library
Thymidine Dock NCI 250,000 7%@ 2eM [138]
phosphorylase
t-RNA guanine FlexX 7 collections 827,000 55%@ (M [22]
transglycosylase
P450 2D6 Gold NCI subset 111 39%@ Ad [95]
SHBG Glide Natural 23,836 7%@ 28M [29]
compounds
TMPKmt FlexX CMC + KEGG? 7,986 10%@ 2gM [45]
AICAR AutoDock NCI 1,990 51%@ 2pM [127]

transformylase

5-HT A receptor Dock > 20 suppliers 1,600,000 21%@ (&1 [13]
NK; receptor Dock > 20 suppliers 1,600,000 15%@ (&1 [13]
D, receptor Dock > 20 suppliers 1,600,000 17%@ (&1 [13]
CCR; receptor Dock > 20 suppliers 1,600,000 12%@ (&1 [13]
5-HT,4 receptor Dock > 20 suppliers 1,600,000 21%@ (&1 [13]

a1, receptor Gold Aventis na. 30%@ uM [54]
NK; receptor FlexX 7 collections 827,000 14%@ pMI [53]
D3 receptor LigandFit  NCI 250,000 40%@ uM [192]

@Hit rate at a concentration threshold. The hit rate is thi® m@it the number of active compounds to the total
number of compounds tested.

bnot available

CAvailable Chemicals Directory (http://www.mdli.com/mhacts/experiment/availablehemdir/)

dTraditional Chinese Medicine Database (http://www.tcro8th/)

eNational Cancer Institute (http://129.43.27.140/ncijib2

fComprehensive Medicinal Chemistry Database (http:/waali.com/products/knowledge/medicinahem)

IKEGG database (http://www.genome.jp/kegg/ligand.html)
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inhibitors [129]. A hierarchical screening protocol invinlg filters of increasing complexity
(simple molecular descriptors, 3-D pharmacophore sedfieixX-Pharm constrained dock-
ing, knowledge-based consensus scoring) decreases tHeenofrvirtual hits from 400,000
to 103, and allowed to identify novel inhibitors in four chieal series. Interestingly, most true
inhibitors were not recovered among the top-ranked posesytiescoring at least the top 50
poses by a consensus scoring protocol designed from a sierkipase (Cdk-2) and a test
dataset. Post-docking filtering by similarity to well-defthintermolecular interactions may
also be a reliable option as it was recently shown to outperftonsensus scoring in identi-
fying protein kinase B inhibitors [59]. In the above-citealses, a precise knowledge-based
selection of the most reliable compounds has been achibasds to the large information
available for related compounds.

The same remark applies to three recent studies aimed alvdiseg inhibitors of two
reductases (dihydrofolate reductase, aldose reducti®@) 167, 215], extensively studied in
the past. Wyset al. [215] docked a library of 2,4-diaminopyrimidines to the &yrstruc-
ture of DHFR fromS.aureusomplexed with an in-house inhibitor. 252 out of the 300 top-
ranked compounds could be synthesized and tested for DH#Btion. 21 % of the proposed
compounds inhibited DHFR from eith&. aureusor S. pneumoniawith IC5, values lower
10 M. Remarkably, a structure-based screening protocol waglftube much superior to a
ligand-based diversity selection in enriching a hit listrime inhibitors.

Rastelliet al. [167] screened a subset of the ACD for inhibitors of the DHE&T P.
falciparumwhich would be insensitive to specific active site mutatiofise full dataset was
first filtered by Catalyst (Accelrys Software Inc., httpww.accelrys.com/products/catalyst/)
to retrieve molecules satisfying a set of 3-D pharmacophgemerated from known protein-
inhibitors X-ray structures and potentially able to bindtome enzyme mutants. Docking the
focussed dataset using Dock, then selecting the top-ramideicules interacting with a key
residue and clustering by chemotypes afforded a final li4ofmolecules. 12 compounds
truly inhibited DHFR wild type as well as active site mutaatsnicromolar concentrations.

Kraemeret al.[106] identified, from the ACD, aldose reductase inhibitbysa series of
hierarchical filters implying substructure similarity sefato known inhibitors, 2-D pharma-
cophore filtering, FlexX docking and DrugScore scoring. @oomds able to bind to the
anionic pocket of the enzyme were prioritized for purchastexperimental evaluation. Out
of the nine compounds tested, six exhibited micromolatiitioin of the target. Interestingly,
DrugScore values were weighted according to the molecudéghw and number of rotatable
bonds of the corresponding molecules to favor the seledii¢ead-like compounds.

First-in-class compounds

Not all targets are suited for experimental high-througtlgmueening. However, if 3-D co-
ordinates are available, VS is still a cheap alternative T® HTwo recent studies [148, 183]
demonstrate the power of VS for quasi-orphan targets (X8t&3) of interest for discover-
ing new antitumoral drugs. The X-ray structure of XIAP coexad to a peptidic inhibitor
was used to identify, within a database of 8,000 compoundseatkfrom traditional Chi-
nese medicinal herbs, a nonpeptidic micromolar XIAP inbib[148]. Likewise, 429,000
compounds from various screening collections were dockebd X-ray structure of Stat3,
a signal transducer and activator of transcription. Resgdhe top 10 % scored compounds
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from each dataset with X-score [202] yielded 200 compound®bwhich 100 could be pur-
chased and tested for Stat3 inhibition [183]. As in the pesistudy, obtained hit rates at
micromolar concentrations were rather low (a single hitafut00 compounds tested) but a
totally novel compound could be discovered and used as a fmdurther improvement.

Nucleic acids have not been widely investigated in strgzhased screening approaches
mainly because of the lack of accurate scoring functiondogfee et al. [58] recently re-
ported the successful discovery of bacterial ribosomaitéiiggands by using a docking tool
(RiboDock) specifically designed for that purpose [142]. éactronic catalogue of 1 mil-
lion commercially-available compounds was first filteredsédect lead-like compounds and
father docked to the crystal structure of taecoliribosomal A-site. Visual inspection of the
top 2,000 best scored compounds yielded a list of 129 madeamhich were evaluated by a
FRET binding assay. Five compounds, unrelated to the anyioogide series, exhibited an
apparentinhibition constant lower thad M. This study is promising by widening the scope
of application of high-throughput docking to non-protedngets and more successful appli-
cations are expected in a near future thanks to a better ptedmation of common docking
tools for predicting ligand binding to nucleic acids [42].

Fragment screening

Fragment screening by X-ray or NMR [197] is becoming an iasiegly popular method for
identifying low molecular weight leads which usually shoavgreater optimization potential
than drug-like compounds [80]. Because of the difficulty éorectly rank docking poses of
small fragments, computational screening of low-molecweight compounds is still in its
infancy. Two recent reports [26, 162] indicate however thatapproach might be promising.

Pickettet al. reported the discovery of low-molecular inhibitors of im@s5’-monophos-
phate dehydrogenase (IMPDH) by virtual needle screeni@gj[JA test set of 21 true IMPDH
inhibitors and two in-house X-ray structures was first usesedect the most adequate dock-
ing/scoring combination (FlexX docking/ScreenScoreisgr A corporate database of 3,425
low-molecular weight reagents was then docked to both Xstayctures to retrieve, among
top-ranked compounds, 100 virtual hits satisfying a visheck Out of the 74 compounds
evaluated for IMPDH inhibition, three molecules exhibitetlCyo lower than35 yM

Carboneet al.[26], although not explicitly looking for fragments, alsisdover low-moec-
ular weight inhibitors of L-xylose reductase by structiiased screening. Hence, this enzyme
is characterized by a very shallow active site and most kngRrinhibitors are short chain
fatty acids. By screening with the Dock program ca. 240,@0mounds from the NCI dataset
(National Cancer Institute, Enhanced NCI Database browegyr://129.43.27.140/ncidb2/)
against the X-ray structure of Xylose reductase (XR), atBohinumber of putative hits (ca.
1,000) could be prioritized by score and known interactitanisey catalytic residues. Out of
39 molecules which were purchased and evaluated for XR itignib two carboxylic acids
(nicotinic acid, benzoic acid) inhibited the target withso values undet00 pM.

Chapter 16 discusses methodical aspects of fragment-dasgdesign.
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Lead optimization

A large majority of structure-based screening projectsaared at identifying hits. However,
lead optimization might be possible at the condition thattilnding mode of the starting lead
can be unambiguously recovered and that a rationale egistefecting the next compounds
to synthesize and test. Kriet al. [109] recently proposed a straightforward approach for
exploring a lead series by enumerating small-sized libsaa few hundred compounds) in
which all combinatorial assemblies of a few linkers and ptezophoric moieties to a given
scaffold are probed. The selection of the best analogueshased on FlexX docking to
the X-ray structure of the phosphodiesterase target araldgieal filtering. A single-round
screening campaign on nine synthesized analogues yietddedubnanomolar inhibitor and
a 900-fold improvement in affinity over the starting lead.atleoptimization is discussed in
detail in Chapter 19.

Homology models as virtual screening targets

All above-reported applications have used high-resatuferay structures to represent the
3-D coordinates of the target under study. However, enzyoraghich a crystal or an NMR
structure are still missing but which shows enough sequeog®logy (ca. 50 %) in the active
site to a X-ray template, can also be used for database dpekiproaches with reasonable
success [138]. However, there is still a debate whetheetangnging in a much lower ho-
mology range € 30%) might be reliable starting points. This observatiompasticularly
relevant for G-protein coupled receptors (GPCRs) a taayatly of outmost pharmaceutical
interest for which a single X-ray structure (bovine rhodopmight be used for comparative
modelling. Several recent reports [13, 16, 53, 54, 192] detrated that GPCRs might be
suitable indeed for structure-based screening. In all edwited successful cases, preliminary
knowledge about known ligands was necessary to fine tuneteptor model. Moreover, the
choice of a relevant pharmacophore hypothesis was a keyrfactiownsize the number of
molecules for docking. Last, a visual inspection was newgde ensure that key intermolec-
ular interactions were established with selected hitsh@lgh the derived homology models
remain crude with respect to high-resolution X-ray stroesu drug-like sub-micromolar an-
tagonists for rhodopsin-like receptors [13, 16, 53, 54,] 16 e already been discovered by
VS.

18.5.3 Concluding remarks

Virtual screening of compound libraries by high-throughghacking is nowadays a routinely-
used computational technique for identifying bioactigatids with numerous proofs of record.
One should however keep in mind that the method is highlyitesso the 3-D coordinates
of the target and is likely to generate numerous false pesitiAs important as the docking
itself are the pre- and post-processing steps which are aetgrk to optimize the hit rate.
The number of new validated chemotypes amenable to optiimizis therefore a better de-
scriptor than the simple hit rate which considerably varthwegard to the current knowledge
on a particular target. VS is a natural complement to tradél medicinal chemistry and
particularly well suited for proposing new molecular soidf that can be easily converted
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into focussed ligand libraries of higher values. Both mdtiiogical improvements (scoring,
hit triage, prediction of ADMET properties) and better sorimg collections (focussed and
targeted libraries) should contribute to improve the valthis powerful tool in a near future.

18.6 Critical evaluation of ligand-based virtual screenim

The choice of tools for ligand-based virtual screening is@st as complicated as for structure-
based techniques. While for structure-based techniquédyrthe right’ docking program
has to be chosen, for ligand-based VS also the method isglf, similarity search or phar-
macophore search, has to be chosen. The first part of thist&€hafl evaluate and com-
pare several methods and give guidance for selecting apatemethods and/or tools for the
screening. The second part will then — as in Section 18.5 —ewegome recent success
stories and, finally, will draw some conclusions on which moels to apply.

18.6.1 Influence of parameter settings

For ligand-based VS the considerations about the choideedlilirary and its preprocessing
are identical to those for structure-based screening (sego® 18.5). The main selection
process is then, which method among those of Section 18i®&en. This depends mainly on
the number of known active ligands available. If at leastsgmore than 5, better more than
20) ligands are known, a ligand-based pharmacophore maddbe derived. If additionally
their activity is known, QSAR techniques are possible. twever, less actives are known,
only similarity searches can be performed at this stage.

18.6.2 Recent success stories

Here, we review recent studies from the literature (2003652@overing the entire field of
ligand-based techniques (Table 18.2), ranging from pheopiaore searching over similarity
searching to QSAR studies.

The studies of Laggneat al.[117] and Peukenrt al.[161] demonstrate the application of
ligand-based pharmacophore models in VS. Laggmed. [117] built pharmacophore mod-
els for ERG2, the emopamil binding protein (EBP), anddheeceptor using Catalyst. The
training set comprised 23 structurally diverse ligand$weitbroad activity range from pico-
molar to micromolar affinity. The pharmacophore models vasgessed using cost analysis
and randomization tests. Furthermore, on a testset of Saulele with binding affinities from
sub-nanomolar to micromolar, from 26 measured affinitidsyére predicted within 1 order
of magnitude. The pharmacophore models were then used foff Y& WDI. From the WDI
previously known binders were found as expected but alsonabeu of new hits. Among
them, 11 were experimentally tested and hitrates betweet &td 75% were obtained for
the three targets. Subsequently, the pharmacophore medsdsaltered to perform a search
in a subset of the KEGG database of 3,525 metabolites. Peetkal. [161] described the
discovery of novel blockers of the Kv1.5 potassium ion clerirased on pharmacophore
search. The authors used DISCO for pharmacophore elumidasing a training set of 7
known Kv1.5 blockers. The pharmacophore model obtainedamasistent with published
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Table 18.2: Successful ligand-based screening data from the recerdtlire (2003—2005).

Target Method Library Size Hit rate Ref.

ERG2 Pharmacophore WD 48,405 55%@ LM [117]

o1 receptor Pharmacophore WDI 48,405 63%@uM [117]

Emopamil Pharmacophore WDI 48,405 73%@uM [117]

binding protein

Kv1.5 Pharmacophore Aventis rfa. 6%@ 6uM [161]

A2 purinergic  Pharmacophore Combinatorial 192 53%@ 10nM 179

receptor similarity library

mMGIuR5 Pharmacophore  Asinex 194,563 33%@u¥D [168]
similarity

Tat-TAR RNA  Pharmacophore SPECS library 229,659 11%@&a0 [169]

interaction similarity

H; receptor QSAR Combinatorial 9,000 87% Watarfabe[48]

library

Trichomonas QSAR in-house 100 259 vitro® [140]

vaginalis

Kvl.5 Similarity Aventis na 1%@ 1,0M [160]

MCH-1R Similarity 24 collections 650,000 2%@ 3IM [30]

Ds receptor Pharmacophore 2 collections 255,286 40%@100nM 5] [2
fingerprints

COX-2 Pharmacophore Commercial 2,700,000 15%@uMIO0 [60]
fingerprints collections

aHit rate at a concentration threshold. The hit rate is th® @it the number of active compounds to the total
number of compounds tested.

bWorld Drug Index (http://scientific.thomson.com/prodsiuidi/)

®not available

dAntihistaminic activity according to the protocol of Watdreet al.[207]

€Cytocidal activity of 100% after 48 h at a concentration o® k€s/ml.

fA combination of 2D and 3D substructure search, 2D and 3Dlaiityi, as well as clustering was used.

SAR data and was able to retrieve 58% of a testset of 423 knowinsblockers. A 3D
search was performed on the Aventis compound collectiantiieg in 1,975 hits after filter-
ing. In a subsequent clustering 27 clusters were obtainddepresentatives of 18 clusters
were screeneih vitro. One active compound was found with and®f 5.6 M belonging to
a new class exhibiting a favorable pharmacokinetic profile.

Schneider and Nettekoven [179] demonstrated the use of@doigipal pharmacophore
similarity model named CATS [178]. This approach was agpjitethe prediction of selective
purinergic receptor (A4 ) antagonists from a virtual combinatorial library. Fromralpninary
SAR model an artificial neural network (self-organizing m8@M) was trained. Molecules
were encoded by the CATS descriptor and the features werpedapom 150-dimensional
space onto the plane of a SOM. Each field of the SOM has thugicgrharmacophore fea-
tures in common. With this technique, the library was reducem 192 to 17 combinatorial
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products. These 17 molecules exhibit 3-fold higher bindiffmities and 3.5-fold higher se-
lectivities than the initial library. The most selectivetagonist displays 121-fold selectivity
and an affinity of 2.4nM. The CATS3D descriptor, a 3D extensib the CATS approach,
was used by Rennegt al. [168] to identify metabotropic glutamate receptor 5 (m@)R
modulators. From the original library of 194,563 molecufest, the 20,000 most 'drug-like’
compounds were selected and screened by similarity of tHESBB vectors with each of
7 active molecules. Of the obtained 27 top-scoring molex@lexhibited an activity below
70 uM. The authors validate, that the method used allows for paeophore-based similarity
searching with 'scaffold-hopping’. This descriptor wasateported to be successful for iden-
tification of new inhibitors of the Tat-TAR RNA interactiod$9]. In addition, also a 'fuzzy’
pharmacophore approach (SQUID) was used. Again, the 2@80'drug-like’ compounds
of an initial library of 229,658 compounds were screenedthinVS the similarities were
calculated by the Manhattan-distance for the CATS3D andhdasity score for the SQUID,
respectively. Both techniques revealed 10 hits, with onéeoude overlap. Two molecules
among them had I§g values o500 M and46 M, respectively.

A screening for antihistaminic compounds blocking Hig receptor was performed by
Duartet al. [48] using a QSAR model based on molecular topology desmsptFrom the
initial virtual library of 9,000 compounds, 236 moleculesmn predicted as active. Of the
selected 7 most promising compounds, experimental testthgpited antihistaminic activity
in 87%. The discovery of trichomonacidal compounds wasntepdy Meneses-Marcet al.
[140]. Alinear discrimination analysis (LDA) QSAR model svaained to classify molecules
using atom-based quadratic indices as descriptors. Salickation of the model revealed 88%
good classification, a virtual screening was performedldgjical assays of 8 compounds se-
lected by screening gave good classification. Two molegubsstained their efficacy against
Trichosomas vaginalisven at10 ug/ml and one of them did not show cytotoxic effects in
macrophage cultivations.

A 2-D similarity search with Unity was performed by Peuketral. [160] for blockers of
the Kv1.5 ion channel. Using a compound with and®f 0.1 xM as reference molecule,
75 compounds with a similarity value of 0.8 were found in the Aventis compound library
and experimentally tested. In this step a moderately actwepound (IGy of 9.5 uM) was
discovered. Although, this compound was rejected due tblpnas with its stability and
properties, a compound with similar side chains but a diffeiscaffold (naphthene spacer
replaced by a biphenyl group) was identified as lead(F4.8 uM).

Clark et al. performed substructure and similarity searches, both inamd three dimen-
sions, among other techniques, for discovering MCH-1Rgottists. As query compounds
11 known MCH-1R antagonists were selected. The combinedtoiin all searches were se-
lected (3,015 molecules) and assessed for drug-likengshegic tractability, and molecular
properties. After duplicate removal, 1,490 compounds reathwhich were clustered using
Daylight fingerprints. After final visual inspection 795 cpounds were purchased and bio-
chemically screened, resulting in 19 compounds witky I@alues belowl pM and the best
having an IGo of 50nM. Clarket al. analyzed, which of the searches revealed which of the
19 compounds. Six compounds were found by 3D similarityceaith FlexS only, also six
were found by 3D substructure search only, two were found blustering approach only,
and one was revealed only by 2D similarity search. Just foormunds were discovered by
more than a single technique. The hit rates were in the rah@eé6 (2D substructure) to
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5.6% (2D similarity).

18.6.3 Comparison of structure-based and ligand-based teniques

Recently groups at Roche [14], at Aventis [52], and at Argdbiscovery [30] compared
structure-based and ligand-based techniques for virtmaeging for GPCR targets. Bissantz
et al. [14] performed a comparative evaluation of the techniqeeséarching 5-Hic ag-
onists, while Ever®t al. [52] performed the comparison on four different biogenidrem
binding GPCRs ¢1A, 5-HT24, D2, and M1 receptors) and Clasgk al. [30] used a hum-
ber of ligand-based techniques (see above) and compamedohsructure-directed pharma-
cophores.

In the work of Bissantzt al. the results of docking into homology models with FRED
were compared to results from Daylight fingerprints, Fesfuees, and the program Phacir.
The performance was assessed by hit rate, enrichment,facithe diversity of the struc-
tures retrieved. Test database was a collection of activésrectives from the Roche com-
pound depository, with high similarity between actives amattives. Four molecules were
used as reference for the three similarity search programm(total 12 similarity searches
were performed) and the top 20% of the ranking lists wereyaedl. Each of the 207 actives
was retrieved with at least one of methods by combining teelte for each of the reference
molecules. When looking at the 12 screening runs, in eadhichthl search many compounds
were not retrieved, or even worse, not a single compound sdgthe of the scaffolds was
found. Furthermore, the results show that the success afi¢ilieods depends strongly on the
choice of the reference ligand. While all three similaritgasures obtained hit rates of at least
4.8% and enrichment factors of 2.3 for one of the ligands, for another reference ligand the
best hit rate was only 2.8%. Some combinations of method afiedence ligand did not per-
form better than random selection. For comparison the agckiogram FRED was applied
using different scoring functions. The hit rate was betw&€&o and 4.5% and the enrichment
factor between 1.5 and 2.2. Thus, while the top-performigaid-based techniques reached
better hit rates than docking, docking always performetebéan half of the ligand-based
screening runs. Furthermore, the compounds retrievedrhgtste-based techniques were
more diverse on average than those from ligand-based segeerhe authors conclude that
the results of structure-based screening are more staidliose of ligand-based screening.
The latter can yield higher hit rates, but only for some ofréference ligands. In addition, the
actives retrieved by docking were more diverse. Based asethesults, the authors propose
to combine at least one similarity search with a docking régpine.

Everset al.[52] also compared docking into homology models to ligaadda protocols.
For the latter, ligand-based pharmacophores, multipléuredrees (MTrees) as well as 3D-
similarity by FlexS, and QSAR models were applied. Pharmphoece and a MTree models
were compared on two different reference ligands (one fol etass of ligand molecules) for
each GPCR. In this study, ligand-based pharmacophore, &dTend 2D QSAR techniques
received higher enrichment factors than docking into thedlogy model with GOLD and
FlexX-Pharm. However, the results with GOLD were still sting. The authors conclude
that docking into GPCR homology models can be useful if nondy a few active ligands are
known. In this study the hit rates obtained with FlexS aresgdhan those obtained from the
other virtual screening techniques applied. This is in @sttto results of other studies (e.g.
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Clark et al. [30], see above and below) where FlexS gives respectahidtses&verset al.
conclude that a 'fair’ comparison can be made only by usinvgisg reference structures for
the queries.

Clark et al.[30] compared a set of different ligand-based methods (8eee) to searches
using structure-directed pharmacophores. The pharmacephwvere generated by docking
one ligand into an homology model, then aligning nine othetetules with GASP on the
docked conformation and refining the complexes by simulateetaling. Based on this align-
ment three different pharmacophore hypotheses were dexivé used as queries, but none of
them gave rise to a hit.

Ligand-based and structure-based virtual screening hamhobeen compared for GPCR
targets. Another group at Aventis used a number of techsidoethe search for Kv1.5
ion channel blockers. Besides the ligand-based work (Hgzesed pharmacophore and two-
dimensional similarity, see above) also a structure-baseskning was performed in which a
protein-derived pharmacophore based on a homology modeleed [163]. The structure-
based VS gave a higher hit rate (7.8%) than the screeningsl lmasligand-based pharma-
cophore (5.5%) and similarity searches (2.7%). Furtheenitre structure-based technique
yielded more active compounds and more chemotypes. Evea imgortant is the result
that there was no overlap between the hit lists obtaineddanti-based and structure-based
approaches.

18.6.4 Concluding remarks

From the large number of successful applications of lighasled virtual screening two general
and simple rules can be derived. These rules help to redeckalge negative rate (ligands
being active but not found) of the screening.

1. Use as many query ligands as possit8everal authors have reported that some ligands
perform very poorly not giving any hit at all, while with otheeference ligands many
hits were found. Unfortunately, it cannot be determineddwaace, which of the ligands
will be successful.

2. Use as many different techniques as possili#hile some of the hits are 'easy’ to find
by many different techniques, often valuable compounds (sique scaffold) are found
only by one of the techniques. Again, it cannot be prediciduch of the techniques
will be successful. It is important to note, that not necelsthe most sophisticated
techniques yield the most hits. In some cases a very simptelséechnique can find an
interesting compound.

Comparing ligand-based and structure-based techniqdé§igsiit since the effectiveness
of ligand-based and structure-based techniques dependgiston the screening project. For
some targets the ligand-based techniques perform be#tersthucture-based methods while
for other targets they perform worse. From this finding adthide can be derived:

3. Use both ligand-based and structure-based techniquesHipte.In this combined sce-
nario the maximal benefit of the different starting pointa te& obtained and the best
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compromise between the strengths and limitations of thwamethods can be ob-
tained. In other words, make use of the complementarity éetwigand-based and
structure-based techniques [14].
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