J. Chem. Inf. Model2007,47, 195-207 195

Optimizing Fragment and Scaffold Docking by Use of Molecular Interaction
Fingerprints

Gilles Marcou and Didier Rognan*

Bioinformatics of the Drug, UMR 7175 CNRS-ULP (Universiteuis Pasteur- Strasbourg ), 74 route du
Rhin, B.P. 24, F-67400 lllkirch, France

Received August 7, 2006

Protein-ligand interaction fingerprints have been used to postprocess docking poses of three ligand data
sets: a set of 40 low-molecular-weight compounds from the Protein Data Bank, a collection of 40 scaffolds
from pharmaceutically relevant protein ligands, and a database of 19 scaffolds extracted from true cdk2
inhibitors seeded in 2230 scaffold decoys. Four popular docking tools (FlexX, Glide, Gold, and Surflex)
were used to generate poses for ligands of the three data sets. In all cases, scoring by the similarity of
interaction fingerprints to a given reference was statistically superior to conventional scoring functions in
posing low-molecular-weight fragments, predicting protein-bound scaffold coordinates according to the known
binding mode of related ligands, and screening a scaffold library to enrich a hit list in true cdk2-targeted
scaffolds.

INTRODUCTION

Fragonomic’? is a rapidly evolving drug discovery area
enabling the identification of efficient low-molecular-weight
hits® by either X-ray diffractioh or nuclear magnetic
resonance spectroscopi true advantage of this screening
method is that both hit identification and binding mode may
be derived simultaneously. By either growing or linking
selected fragments, nanomolar leads can then be designed
at an incomparable paéeStructural biology screening
however requires the setup of a fragment library (compen-
dium of low-molecular-weight compounds) by applying
knowledge-bas€dand medicinal chemistry rulésUp to
now, these fragment libraries have no particular focus on
peculiar targets. Applying a computational protocol to select
the most suitable fragments for a given target would thus be
highly desirable to hasten the screening process and to open
this technology to academia. Molecular docKifgs now
been successfully used for a decade to predict the binding
mode of druglike compounds and screen large libraries.
However, the well-identified weakness of fast energy-based
scoring function¥ currently limits the systematic use of
docking to low-molecular-weight compounds. Very often,
one faces the situation where a continuum of poses of Figyre 1. X-ray (sticks) and Glide-predicted poses (gray lines) of
comparable binding energy describes the possible interactiona small molecular weight fragment (adenine) to phosphodiesterase
of a fragment to its binding site, the scoring function being 4D. The fragment pocket is delimited by a white surface and X-ray
unable to discriminate near-native from irrelevant poses fragment coordinates extracted from adenosine monophosphate
(Figure 1). Docking under pharmacophoric constraints may (PDB entry 1tb7).

slightly improve the situation regarding in silico fragment ) . ) ) ) aas
screening? however still at relatively low accuracy. proaches involving either multiple scoring functiofs;

To better address this problem, a much stronger emphasiglocking tools;® or alternative protein coordinatésor by
has been put recently on postdocking strategies than on morg®mbining docking to additional computational tools (e.g.,

accurate scoring functions. Docking poses can be challenged@yesian stegti;ticg, molecular mechanic$, MM-PB GB/
for the consistency of topological descriptors (e.g., acces- SA methods?Z0or quantum mechanigy. As an indicator
sibility of the ligand, holes along the proteifigand of the importance of postdocking issues, several standalone

. . . . i _ 3 i

interface, and interaction mismatchéshy consensus ap-  Programs (e.g., Silvef,Post-Dock?® and Viscané) are now
dedicated to this task. Efficient postprocessing however
* Corresponding author e-mail: didier.rognan@pharma.u-strasbg.fr. ~ requires a considerable amount of pre-existing knowledge.
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Many postdocking strategies are thus usually target- and/orWhen the above-defined thresholds were used, poses could
project-dependent. be classified in four categories assuming that the attribute
In order to rely on simple, robust but efficient postdocking “positive” describes poses with a Tc-IFP value above 0.6
processing, we herewith propose the use of molecular and that the attributetfue” describes poses for which RMSD
interaction fingerprints (IFP) for prioritizing the most relevant and Tc-IFP agree: true positives (RMSD 2 A and Tc-
poses for either low-molecular-weight fragments or molecular IFP = 0.6), true negatives (RMSB2 A and Tc-IFP< 0.6),
scaffolds. Practically, IFPs are simple bit strings that convert false positives (RMSD- 2 A and Tc-IFP= 0.6), and false
3-D information about proteinligand interactions into  negatives (RMSDs 2 A and Tc-IFP< 0.6). Whereas true
simple 1-D bit vector representations that can be quickly positives and negatives describe the majority of poses, there
compared by the use of traditional metrics (e.g., Tanimoto is still a significant number of false negatives and, to a much
coefficient or Euclidian distance). Usage of IFPs has been lesser extent, some false positives from all docking programs
recently pioneered by Biogen ldétwith a particular focus ~ (Figure 2B and Table 1). The percentages of false positives
on protein kinases and has previously shown in either (7.5% on average) and false negatives (ca. 12%) are relatively
residue-baséfl or atom-based implementatiéfd’ to out- stable across the various docking tools used herein (Table
perform conventional scoring functions in predicting correct 1). From a pure statistical point of view, Gold and Surflex
poses for druglike compounds. Their utility in fragment generate the best set of poses (highest proportion of true
docking is however still unknown. To assess their utility as positives) and consequently the lowest number of true
postdocking filters, three sets of low-molecular-weight negatives (Table 1). Whereas true positive and true negative
fragments and scaffolds have been docked to their cognatePoses are straightforward to analyze, false poses require more
Protein data Bank (PDB) targets using four popular docking attention. An exhaustive analysis of the latter poses indicate
tools?® (FlexX,2° Gold?° Glide® and Surfle®?). Using a that false positives are usually planar molecules with
Tanimoto metric (Tc-IFP) measuring the similarity of Symmetry or pseudo-symmetry axes exhibiting high RMSD
predicted to X-ray IFP, we unambiguously show that (i) this values whereas most interactions to the target are conserved
descriptor is better suited to quantify docking success than(e.g., Figure 3A). Conversely, a slight translation of a
the widely used root-mean-square deviation (RMSD) crite- predicted pose with respect to the true X-ray pose can result
rion and (ii) scoring poses by decreasing Tc-IFP outperforms in false positives where a partial or complete loss of pretein
conventional scoring functions in discriminating near-native ligand interactions (e.g., Figure 3B) does not much affect
poses from decoys and enriching a hit list in “true active” the RMSD value. From here on, the success of docking will
scaffolds when screening a scaffold library for cdk2 thus be quantified by using only the Tc-IFP metric that
inhibitors. faithfully reproduce observed molecular interactions in the
reference X-ray structures. For the present data set, we
RESULTS considered a docking to be successful if at least 60% of the
intermolecular interactions observed in the X-ray structure
The first benchmark on 42 low-molecular-weight PDB  (Tc-IFP > 0.6) are reproduced by the docking program. As
ligands (Chart 1, Supporting Information) was set up to previously noticed (Figure 2A), this threshold roughly
answer a simple questiorare current docking tools suitable  corresponds to a 2.0 A RMSD cutoff.
to pose low-molecular-weight fragments? Whatever the docking engine, using the docking score as
All 42 fragments were docked to their cognate proteins a criterion to rank low-molecular-weight fragments is not
using four docking tools (FlexX, Glide, Gold, and Surflex). satisfactory because only modest success rates can be
Corresponding compounds were prefiltered from the sc-PDB reported (from 40% for FlexX to 70% for Glide; Figure 4).
databas® according to “fragmentlike” filters (see the This did not imply that satisfactory solutions were not
Computational Methods). As expected and previously re- generated in the set of predicted poses. Hence, when the Tc-
ported for “druglike” compound data sétsno relationships  IFP scoring function (in the present case, the Tc-IFP of each
could be found between the docking score and the RMSD pose is computed with respect to the X-ray pose) is used,
to the true X-ray pose (data not shown). much higher success rates are observed (from 70% for FlexX
When the RMSD to the X-ray pose is compared to the up to 95% for Glide; Figure 4). As expected, picking the
herein introduced Tc-IFP value (see the mathematical defini- lowest RMSD solution always performs worse than selecting
tion in the Computational Methods section), better correla- the best Tc-IFP pose, confirming that RMSD is not the best
tions are observed (Figure 2A). As expected, Tc-IFP possible criterion for selecting the best pose available.
increases when RMSD decreases. Plotting average RMSDAIthough the scope of the study is not to compare docking
values for poses within a defined Tc-IFP interval suggests tools, we can notice that Glide is remarkably well-suited to
that a Tc-IFP threshold of 0.60 corresponds to the widely dock small fragments despite the moderate utility of its
used RMSD threshold of 2.0 A for quantifying docking internal Glidescore scoring function.
succesd?3° However, the RMSD to Tc-IFP dependency  The second benchmark was aimed at answering the
varies across docking tools (Figure 2B). FlexX, Gold, and following question: given the known binding mode of a
Surflex poses exhibit moderate relationships between RMSD molecular scaffold, is it possible to successfully dock
and Tc-IFP (0.70< |r| < 0.77 and 420< n < 1260), which bioisosteric scaffolds sharing the same target and binding
is not the case of Glide, for which the relationship is poor site?
(Ir] = 0.57 andn = 974). The higher tendency of FlexX to We wanted to investigate scaffold docking in a scaffold-
generate poses with Tc-IFP values of 0 is noticeable andhopping context, which means predicting the binding mode
corresponds to the well-documented tendency of this dockingof a given scaffold A from the known binding mode of a
tool to generate poses at the periphery of the binding?%ite. bioisosteric scaffold B. Therefore, we needed several targets
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Figure 2. Plotting RMS deviations from the X-ray pose versus similarity of interaction fingerprints Tc-IFP (expressed by a Tanimoto

coefficient calculated from IFPs generated by the X-ray and the predicted pose) for a set of 42 low-molecular PDB ligands (data set 1). (A)
Average RMSD and standard deviation values (error bars) for increasing Tc-IFP intervals (data collected for a total of 3924 poses from
four docking tools). (B) Docking program dependency of RMSD to Tc-IFP. Poses located in the upper-right part are considered as false
positives (high RMSD, high Tc-IFP), and poses located in the lower-left part are considered as false negatives (low RMSD, low Tc-IFP).

Poses in the upper-left part are true negatives (high RMSD, low Tc-IFP), whereas poses in the lower-right part are true positives (low
RMSD, high Tc-IFP).

of pharmaceutical interest for which there is enough scaffold known sc-PDB ligand% For each target, heterocyclic
diversity among cocrystallized PDB ligands. Looking at the scaffolds representing roughly 50% of the corresponding full
in-house sc-PDB databa%ewhich is a subset of the PDB  compounds, sharing the same location in the binding site,
for which only proteins with druggable binding sites are and exhibiting a wide array of intermolecular interactions
stored, we could find 10 targets satisfying these conditions were manually selected. In order to design a data set of
(neuraminidase, estrogen receptgmrotein tyrosine phos-  similar size to the previous database of low-molecular-weight
phatase 1B, phosphodiesterase 4D, tryptophan synthasefragments, four different scaffolds were thus chosen for each
ionotropic glutamate receptor type 2, cell division protein target to yield a final data set of 40 scaffolds (Chart 2,
kinase 2, carbonic anhydrase type 2, thrombin, and cy- Supporting Information).

clooxygenase type 2). Different scaffolds were considered To closely mimic real-life situations, each pose for a
for each of 10 therapeutically relevant human targets from particular scaffold was fingerprinted and cross-scored with
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Table 1. Classification of Fragment Poses for Four Docking varies with the reference IFP from 0.5 (e.g., 1di8 and 1jvp)
Programs to 0.78 (1elx). Among the 19 IFP references, five can be
FlexX Glide Gold Surflex considered as good (AUE 0.7) and 11 as fair (0.6 AUC
TP 16 13 40 30 >0.7). Last, the two-class Bayesian categorization model
FP 2 12 9 7 offers the best possible performance with an AUC value of
FN° 14 9 11 14 0.78. When the corresponding ROC plots (Figure 8) are
TN 68 66 40 49

compared, the Bayesian model is by far the most adequate

aTrue positives (RMSD: 2 A and Tc-IFP= 0.6)." False positives ~ SCT€ening strategy. It allows the recovery of 14 out of the
(RMSD > 2 A and Tc-IFP= 0.6).¢ False negatives (RMSE 2 A 19 true scaffolds (74%) while selecting only 25% of the
and Tc-IFP < 0.6).9True negatives (RMSD> 2 A and Tc-IFP random decoys (557 scaffolds).
< 0.6).

DISCUSSION
respect to the fingerprints generated from the three other o ) ) )
scaffolds describing ligands of the same target. The best of The contribution of chemoinformatics to fragonomics has

these three scores was then saved for each entry and used #gP {0 nNow been limited to the design of appropriate fragment
assess docking success (Tc-IEF0.6) or a lack thereof. libraries using various knowledge-based princiglg$ri-

Again, scoring by interaction fingerprint similarity always oritization of the most interesting fragments usi_ng_a structure-
outperforms energy-based scoring functions for all docking P@sed approach has been hampered by the limited accuracy
programs used herein (Figure 5). Although some differences ©f fast empirical scoring functions which are usually unable

might be observed among the different docking tools, the O discriminate near-native fragment poses from decoys
general trend is conserved. The success rate rises from calFigure 1). We therefore propose an alternative nonener-

60% for conventional scoring functions to ca. 85% when 9€tical approach consisting firstin converting proteligand
using Tc-IFP as a scoring metric. Furthermore, scoring by interactions ina bit vect_or called an mteracuon fmgerprmt
similarity of interaction fingerprints selects significantly @nd second in comparing the predicted IFP to a given
better poses than a simple topological RMSD criterion would 'éférence. The interaction fingerprint concept (SIFt: struc-
do (Figure 5). Despite the low number of chemotypes tural_ interaction flngerprl_nt) has recently be_en exemplified
investigated for each target and the limited value of statistics 8t Biogen Idec? in a series of elegant studies focused on
derived thereof, a decomposition of success rate by targetPrOtein kinases and has shown several promising features:
(Figure 6) clearly shows that postprocessing docking poses(l) €nhancing the quality of pose prediction in docking
by Tc-IFP has a considerable value for difficult targets (e.g., ©Periments? (i) clustering protein-ligand interactions for
ionotropic glutamate receptor type 2 for FlexX, Glide, and & Panel of related inhibitors according to the diversity of
Surflex; human carbonic anhydrase, neuraminidase, andtheir interaction with a target subfamityand (iii) assisting
thrombin for Glide; COX-2 for Gold: and neuraminidase and target-biased library desidii Herewith, we applied IFPs to
phosphodiesterase 4D for Surflex). For easier test cases (e.g/ragment docking with the hope of bypassing classical
cdk2, estrogen recepter), conventional scoring by energy problems associated with energy-based scoring functions.
performs relatively well and the added-value of IFPs is FPs aré computed on the fly from 3-D coordinates of both
marginal. the protein and the ligand using an in-house-developed
The third benchmark was even more stringent and set up@lgorithm utilizing OpenEye’s OEChem libré&fyand a set
to checkwhether scaffolds could be efficiently prioritized ~©f topological rules (Tables-24) for defining a panel of
by a structure-basedirtual screening approachA library ~ €ight possible interactions (H-bond, weak H-bond, ionic,
of 2249 scaffolds (data set 3, see Computational Methods)nydrophobic, face-to-face aromatic, edge-to-face aromatic,
containing 19 true actives (scaffolds manually extracted from 7-Cation, and metal complexation). Our IFP implementation
true cdk2 inhibitors; Supporting Information Chart 3) was Vares significantly from that of Biogen because we do not

set up and docked to one X-ray structure of human cdk2 distinguish main-chain from side-chain protein atoms in
(PDB entry 1dm2) using the Gold3.1 program. Various generating the residue-based fingerprint (this feature was

strategies were used to rank scaffolds. Two of them (Gold- SPecifically designed at Biogen for protein-kinase inhibitors
score and Chemscore) are energy-based scoring function®€cause interaction with the main-chain atoms of the hinge
typically used with Gold: the third one is the Tc-IFP metric region is a crucial determinant of ATP-competltlve inhibi-
(using as reference a single IFP derived from each of the 19t0rs”). Furthermore, we allow more interaction types than
true scaffolds); the fourth one is a Laplacian-modified the original SIFt approach (Tables 2 and 3).

Bayesian classifié? using multiple references (all 19 IFPs ~ Three different data sets have been used to benchmark
from true actives, see Computational Methods). The areathe use of IFP in low-molecular-weight compound docking.
under the curve (AUC) of receiver-operating characteristic The first one (data set 1) is a compendium of 42 fragments
(ROC) plot§* derived from the four scoring lists was used ©0f known protein-bound X-ray coordinates from the sc-PDB
as an indicator of both the sensitivity (how many true databasé& which comprises structural information about
positives are recovered) and the specificity (how many false protein, active-site, and cognate PDB ligands which over-
positives are recovered) of the scoring method (Figure 7). come a series of intensive filters (resolution limit, drugga-
Both energy-based scoring functions (Goldscore and Chem-bility of the binding site, druglikeness of the ligand, etc.)
score) performed worse than random picking (ROC AUC  Because we did not want to bias our approach toward a
< 0.5). Interestingly, Tc-IFP scoring dramatically improves particular docking tool, four among the best docking
the in silico screening accuracy whatever IFP is used as aprograms (FlexX, Glide, Gold, and Surflé%}°4thave been
reference (Figure 7). However, the AUC value considerably used to generate a set of poses for each ligand. A first aspect
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Figure 3. Prototypical examples of mismatches between RMSD and Tc-IFP, for two low-molecular-weight ligands (A: 3H-imidazo[2,1-
I]purine to 3-methyladenine DNA glycosylase, PDB entry 1pu8; B: 9-methylguanine to dihydroneopterin aldolase, PDB entry 1rrw). The
bound ligand is shown as sticks (cyan carbon, X-ray pose; green carbon, predicted pose).
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Figure 4. Posing accuracy (expressed by Tc-IFP) of 42 low-molecular-weight ligands (data set 1) obtained with FlexX, Glide, Gold, and
Surflex. For each complex, three poses are stored: the best energy pose (top-ranked by the scoring function, green lines), the best Tc-IFP
pose (highest IFP similarity to the X-ray pose, red lines), and the best RMSD pose (closest RMSD to the X-ray pose, blue lines).

of the present work was to use a proper metric to estimatefor which the RMSD value is misleading. It is either much
docking success. Usually, a RMSD threshdli@ & has been  too high (false positives, Figure 3A) or much too low (false
used as an indicator of pose accuracy. We felt that this globalnegatives, Figure 3B) with regard to the key protdigand
metric was not really suited to the basic aim of our study interaction which is really reproduced. Whereas the Tc-IFP
because it focuses on ligand coordinates only and thus losegnetric is clearly better than the RMSD criterion for handling
information about the kind of intermolecular interactions false positives (7.5% of all poses), the advantage of the herein
which have been reproduced or not (whether a particular introduced metric is more questionable for false negatives
residue-based bit string is recovered or not). Using the set(12% on average) where a translation of the predicted pose
of 3924 poses generated for data set 1, we wished first towith respect to the X-ray pose is usually seen (Figure 3B).
look at relationships between computed RMSD and the A total of 7% of the false negatives show a RMSD lower
similarity of IFPs (Tc-IFP) using in both cases the X-ray than 0.5 A and cannot be considered as misdocked because
pose as a reference. As expected, there is an overallenergy refinement of the latter poses or rescoring using other
relationship between RMSD and Tc-IFP (Figure 2A,B). In scoring functions based on different physicochemical prin-
many cases, a low RMSD correlates with a high Tc-IFP and ciples may easily transform false negatives into true positives.
vice versa. However, there is a significant number of caseslt is less likely that refining poses with a RMSD higher than
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Figure 5. Posing accuracy (expressed by the highest Tc-IFP to any of the three other reference scaffolds) for 40 scaffolds (data set 2)
obtained with FlexX, Glide, Gold, and Surflex. For each complex, three poses are stored: the best energy pose (green lines), the best Tc
pose (red lines), and the best RMSD pose (blue lines).
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Figure 6. Decomposition of the docking accuracy of 40 scaffolds for 10 pharmaceutical targets. For each complex, three poses are stored:
the best energy pose (white bars), the best Tc-IFP pose (gray bars), and the best RMSD pose (back bars).

1 A would lead to a situation where most of the missing broadening these rules brings much more noise than the true
interactions could be recovered. In that case, we believe thatsignal and therefore has not been implemented in our IFPs.
the Tc-IFP is more faithful than the RMSD value. This Altogether, only 146 poses out of 3924 (3.7%) sharing a
represents the majority (68%) of observed false negatives.RMSD aboe 1 A and a Tc-IFP below 0.6 are better
For the remaining poses (RMSD between 0.5 and 1 A), a described using RMSD than using the Tc-IFP criterion.
fuzzier definition of rules used to detect intermolecular Altogether, it is therefore strongly advisable to omit the
interactions could be implemented (e.g., tolerating an H-bond RMSD descriptor to quantify docking success. From here
distance up to 4 A). However, our experience suggests thaton, the Tc-IFP value will be used only using a 0.6 threshold
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— Table 3. Interaction Fingerprint Definition
0.7 1 _ M - bit
= x N x vector
06 S M N position protein atom flag ligand atom flag interaction
05 N - M 1 hydrophobe hydrop'hobe hydrophobic
g 2 aromatic aromatic face-to-face
<04 3 aromatic aromatic edge-to-face
[&]
2o 4 donor acceptor H-bond
i 5 acceptor donor H-bond
02 6 cation anion ionic
7 anion cation ionic
0.1 8 weak donor acceptor weak H-bond
oo weak donor weak acceptor
) G‘S C‘S h;QI ‘-hIES IdIiB Id:rQ Ielhc I[Iul IgI‘S InIOw |I|I|s ‘jI\‘D IkIeG Iltliu ||r3i| 1;23 h;«.l Ipr-pe Irrrw IwIOx 1:65' NIE donor Weak acceptor
Score 9 acceptor weak donor weak H-bond
- - . - weak acceptor weak donor
Figure 7. Accuracy of receiver-operating characteristic (ROC) plots weak acceptor donor

expressed by the area under the curve (AUC) for various virtual
screening protocols using either energy-based scoring functions (GS,
Goldscore; CS, Chemscore) or the Tc-IFP metric with a single IFP
(1agl to 1y8y) generated from the corresponding PDB structures
and a user-defined scaffold definition (Supporting Information Chart de
3) or multiple references (NB: Nae Bayesian model trained on
19 reference IFPs and 2291 decoys).

—

10
11

cation or aromatic aromatic or catiom-cation
metal acceptor metal complexation

aSee Table 1 for description of atom flagsSee Table 3 for
scription of rules used to identify proteitigand interactions.

tions are recovered in the predicted pose). Although the
individual performance of docking tools varies according to
the data set and probably to the individual program settings
(no particular emphasis was put in fine-tuning program-
specific settings for this particular data set), the benefit is
independent of the docking program used. This is a very
important feature because predicting which docking tool is
going to perform well is context-dependent and very dif-
ficult.?® Using a robust docking tool, the user can thus be
sure that the Tc-IFP metric will rank docking poses better

20 40 60 80 100 than a conventional scoring function. Furthermore, comparing
False positive rate (1 - Specificity) RMSD and Tc-IFP rankings clearly shows that the best
Figure 8. Receiver-operating characteristic (ROC) plot for GoLD RMSD poses are definitely not the best to select among the
docking of 22 249 scaffolds (data set 3) to the X-ray structure of Set of proposed solutions. There are still some cases totally
human cdk2 (PDB entry 1dm2) using Tc-IFP similarity score unsuitable for fragment docking (Tc-IFR 0.3) whatever
(1dm2, single reference; NB, Bayesian model) and two scoring the scoring function. These difficult cases correspond to three
functions (Goldscore and Chemscore) to discriminate the 19 true main situations (Figure 9): (i) the binding site is highly polar,
active scaffolds from 22 230 decoys. . 27

and different anchors are equally good at positioning the

for quantifying success. It can be seen as a quantitativef@gment (e.g., 1aj0); (i) the binding site is almost hydro-
descriptor for what Kroemer et al. called an interaction-based Phobic, and very few polar anchors are available to position

=]
o

— Random
Goldscore
Chemscore
— Tc-IFP (1dm2)
= Tc-IFP {NB)

e o =]
< 2 b

True Positive Rate (Sensitivity)
[+
(=]

o

[=1]

analysis of contacts in a recent studyg,oming to the same
conclusion.
There is a clear advantage in using Tc-IFP for ranking

the fragment (e.g., 1qy2); (iii) the binding site is largely open
to solvent and the fragment partially buried into the protein
(e.g., 1rrw, 1tuv, 1yvm, and 3pce).

fragment poses as illustrated by results obtained for data set 1S first computational experiment suggests that the main

1 (Figure 4). Whatever the docking tool, scoring by Tc-IFP
is largely superior to energy-based pose ranking. Docking
success rises from ca. 400% to 76-95% if a Tc-IFP
threshold of 0.6 is applied (60% of protettigand interac-

Table 2. Atom Flags Used in Determining IFPs

flag SMARTS definition
donor [O,N,S][H]
acceptor [O,N;—;1+]
cation F+]
anion k=1
aromatic [a;R]
hydrophobe [C,S,F,CI,Br,1]
weak acceptor [a:aAAA#A,SH0]
weak donor [c,CX3,CX2][H]
metal [Ca,Cd,Co,Cu, Fe,Mg,Mn,Ni,Zn]

a(Weak) H-bond donors and acceptors have been determined

according to Steine®

problem in fragment docking is usually not sampling the
active site space for generating reliable poses (e.g., 95% of
Glide poses are correct; Figure 4B) but simply ranking them.
Clearly, one cannot exclude misscoring issues for the ca.
20% of wrong answers using FlexX, Gold, or Surflex (Figure
4) where constrained docking using the Tc-IFP metric as
the internal scoring function (currently under investigation
in our group) is likely to improve the docking accuracy.
When a given set of available poses is used, postprocessing
docking outputs by computing IFPs and comparing them to
a reference significantly enhance the quality of the first-
ranked pose. Of course, it is obvious that self-scoring (scoring
a protein-ligand IFP against itself) will outperform scoring
by energy as the computational experiment focuses on Tc-
IFP values. However, we here wanted to ascertain that,
among all predicted poses, some are really close to the
experimentally observed solution and that there is no need
to constrain the docking algorithm.
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Table 4. Geometric Rules Used in Determining IFPs

interaction rule 1 rule 2
H-bond [DA] <354 <ﬁ,ﬁ> E [?ﬂ
Weak H-bond [DA]<2.84 (D7) e {%%}
Tonic [F<404

Hydrophobe [rr] <454

Aromatic (Face to face) [acac] <4.04 <ZZ> c {_—6”%}
Aromatic (Edge to face) [acacy] <4.04 <Zr72> c [%%”}
n-cation M <4.04 <;ac—+> € [%%}
Metal M| <284

aD, H-bond donorA, H-bond acceptors, cation;—, anion;Y, hydrophobeac, geometric center of an aromatic ring, metal.® H, hydrogen;
n, normal to the aromatic ring.

In a second set of experiments, cross-scoring was ad-docking of the corresponding scaffolds very difficult because
dressed by selecting 40 scaffolds from pharmaceutically many orientations can fulfill H-bonding requirements. For
relevant target ligands (data set 2). For each of the 10 selectegbhosphodiesterase ligands, docking algorithms tend to locate
targets, four different scaffolds were chosen and each scaffoldpolar groups of the scaffolds toward the metal binding site
docked into its cognate protein but scored according to theand not the GIn369 pocket. It is therefore logical that
IFP generated by the three others. This computational significant failures occur for the latter active sites.
experiment is therefore closer to a more realistic situation In a last series of computational experiments, a structure-
where one wants to prioritize scaffold poses on the basis of based virtual screening was undertaken to retrieve scaffolds
the knowledge of bioequivalent scaffolds. We therefore chose likely to bind to the human cdk?2 target. This enzyme was
scaffolds sharing the same binding site for a particular target. chosen as the test set for several reasons: (i) it seems to be
Again, scoring by Tc-IFP outperforms scoring by conven- an adequate target for scaffold docking (recall Figure 6); (ii)
tional scoring functions (please note that the standard scoringit has previously been used for studying the virtual screening
function of each docking program was used and that no accuracy of low-molecular-weight inhibitots;(iii) it has
rescoring attempt with external functions was tested). Still, been cocrystallized with various druglike ATP-competitive
using a 0.6 similarity threshold, docking success increasesinhibitors sharing the same binding stfethus offering the
from ca. 60% to 85% when using the Tc-IFP scoring metric possibility to study the influence of the reference IFP in the
(Figure 5). As for the previous data set of fragments, scoring Tc-IFP scoring. Gold was used as the docking tool for this
by Tc-IFP also outperforms scoring by RMSD, which virtual screening experiment to compare our results with the
justifies the use of the similarity metric for selecting the previously published virtual screening data on low-molecular-
appropriate poses. Whereas FlexX was superior in generatingveight cdk2 inhibitors which was also realized using Géld.
appropriate poses for scaffolds than for fragments, the As expected from this latter study,energetic scoring
opposite observation is seen for Glide and Gold, Surflex functions are not suited to distinguish “true cdk2” scaffolds
showing very similar accuracy for both data sets (Figures 4 from decoys (Figures 7 and 8). The performance of Chem-
and 5). The noticeable differences in the individual perfor- score was close to that of random picking, whereas that of
mance of docking tools across both test sets are probablyGoldscore was even worse. This did not mean that good
data-set-dependent. More importantly, the same trend isposes have not been generated because scoring them by
observed: selecting poses ranked by the Tc-IFP metric issimilarity of their IFP to that of a given reference gave much
the most reliable strategy. This assumption is particularly better results (Figures 7 and 8). However, using the Tc-IFP
justified for difficult targets (e.g., ionotropic glutamate metric requires first the selection of an IFP reference which
receptor type 2 and phosphodiesterase 4D) where energymight not be an easy task. Hence, human cdk2 has been
based scoring functions usually fail. The binding cleft of the cocrystallized with various inhibitors all binding to the ATP
ionotropic glutamate receptor type 2 is lined by polar residues binding site and exhibiting different chemotyf@©ne may
plus two important water molecules, which renders the thus use several X-ray structures for generating the reference
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I vs100

Figure 9. Difficult test cases for fragment docking. The X-ray pose (white-carbon sticks) is shown along with predicted poses (FlexX,
cyan-carbons sticks; Gold, green-carbon sticks; Surflex, magenta-carbon sticks). The active site is represented by a solid surface and important
protein residues by wire frames. Besides carbon atoms, the atom color coding is the following: oxygen, red; nitrogen, blue; sulfur, yellow.
(A) 1ajo: The aniline moiety of the ligand is well-positioned, but the interactions of the sulfonamide group with Arg63 and Arg235 are not
reproduced by FlexX, which prefers to anchor the sulfonamide to Arg63 and Arg255. (B) 1qy2: The ligand is embedded in a very apolar
subsite with a single H bond to the pyrazine fragment, docked outside the binding site by FlexX. (C) 1rrw: The interaction of the 2-aminouracyl
ring with Glu74 is reproduced but not the location of the partially buried imidazole ring, which is forced by Gold to H-bond to Lys100. (D)
1lyvm: The thiazole ring is H-bonded to His79 and His178 in the X-ray structure with a benzimidazole ring partially buried upon binding.
Surflex places the benzimidazole ring deeper in the active site and predicts H-bonding of the benzimidazole moiety to His79 and His174.

IFP. For human cdk2, the problem is complicated by the Scaffold ranking using energy-based scoring functions
fact that the binding site may exist in either a “closed” or (Goldscore and Chemscore) was shown to be even worse
“opened” form according to the conformation of lining than random picking, whereas the usage of IFPs significantly
residues (e.g., Lys33 and Aspl45). Because we aimed toenhances the in silico screening accuracy (Figures 7 and 8).
dock very low molecular weight ligands (scaffolds) into the Interestingly, most of the single IFP references available
protein structure, a closed form (PDB entry 1dm2) previously allowed a significant enrichment of virtual hits in true cdk2-
shown to be acceptable for docking many cdk2 ligdhdss targeted scaffolds by using the Tc-IFP scoring function
used here. (Figure 7). Although the 1dm2 protein coordinates have been
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Figure 10. Phylogenic tree obtained by neighbor-joining clustering of 19 reference IFPs (Supporting Information Chart 3) generated from
known PDB structures. A bit-to-bit comparison was applied to the 133-bit string to measure distance between two IFPs. On-bits are displayed
for each of the 19 residues of the human cdk2 active site with the following color coding: blue, hydrophobic interactions; green, aromatic
interactions; red, hydrogen bonds. Bit vector positions are analogous to those indicated in Table 3. Branch lengths are proportional to the
distance (scale below the tree) between bit strings.

used, the 1dm2 scaffold was not the best possible choice CONCLUSIONS
for generating the most valuable reference IFP (Figure 8).
Only three reference IFPs (1di8, 1ljvp, and 1p2a) were
unsuitable to retrieve true active scaffolds. Clustering all
reference IFPs indicates that two of the poor IFPs are Closecoordinates and represent, therefore, a logical description of

together (1jvp and 1p2a) at the bottom of the IFP tree (Figure docking poses. From the first two benchmark data sets used
10). Interestingly, the corresponding three scaffolds interact;, his study, we propose a Tc-IFP threshold of 0.6 for
with the Asp145 side chain via either hydrophobic interac- giscriminating acceptable from bad solutions. However, only
tions (1jvp and 1p2a) or hydrogen bonding (1di8), two fytyre applications of this new metric on additional bench-
features which are absent in other reference IFPs (Flguremarks will he|p to refine the proposed threshold. Our
10). docking/scoring approach is slightly different from several
When a Bayesian model trained with known binding constrained docking prptocols published §03Pefﬁ.v4elnthe
modes of a few actives and predicted poses of presumecxp_res‘lent case, dockmg 1S tot?lly u2constra|r1ed and poses "?‘rhe
inactives is used, significant enrichments in true active simply p]f)stprocgstse t? sef_ectt elotnes w;}_agreerr:jent ;"f{'t
scaffolds can be obtained by a standard structure-based ir’f)Ome reference interaction fingerprin (s) which nee hotto
. . . . e derived from the compound to dock. Our protocol is also
silico screening approach without having the need to

- . . . different in spirit from template matchirf§which attempts
explicitly de_fme one reference (Figure 7). A_\ss_gmmg that a to optimally fit one compound to a reference set of
proper scoring metric has been found to prioritize very low coordinates without any guarantee that protdigand
molecular weight compounds, the true advantages of dockingiieractions are going to be conserved.

scaffolds instead of full compounds are double: (i) less

compounds have to be docked to cover a defined chemicaly, e pased design with ligand-based data mining. Hence,
space, and therefore a I_arger proportion of_.V|r_tuz.a| hits can 4 fingerprints have heavily been investigated in the field
be selected and experimentally tested; (i) it is @ Very ¢ |igand-based virtual screenifg,notably the usage of
straig_htforward gomputational approach to scaffold hopiling single’® versus multiple bait& fingerprint scaling® and

and library design. Our results on cdk2-targeted scaffold activity-centered fingerprints. Fingerprints are also well-
docking compares very favorably with a previous pharma- syjted for applying machine learning meth&dgneural
cophore constrained docking of low-molecular-weight cdk2 networks, Bayesian statistics, support vector machines,
inhibitors!* although caution should be given to such recursive partitioning, and binary kernel discrimination) and
comparisons because of the different settings in both taking the maximal advantage of multiple referen@dssing
computational experiments. IFPs is thus a fuzzy but very promising way of selecting

We herewith propose the usage of IFPs instead of the
widely used RMSD metric to estimate docking success. IFPs
focus on proteirrligand interactions and not on ligand

IFPs present the noticeable advantage of reconciling
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virtual poses/hits satisfying user-defined prerequisites which ‘ ——
appear especially well-suited for fragment and scaffold in |SB‘ scaffold Library Bradley
silico screening and thus better link structure-based screening | cdk? dataset

21,393 scaffolds

to fragment-based drug discovery. Tt I

309 actives

COMPUTATIONAL METHODS I:l,, L R
19 scaffolds HBID Count - | l

Ligand Setup. Three ligand databases have been prepared 1 aromatic ring
as follows: 3,306 scaffolds 47 *active’
Data Set 1.Starting from 2721 “druglike” compounds | el
extracted from the sc-PDB,a database of druggable binding o FORP 4 fingerpeii
. .. Similarity threshold A SIngErprinis
sites (http://bioinfo-pharma.u-strasbg.fr/scPDB/) from the Te<05 ¢
Protein Data BankR? a first topological filtering was estab-

lished using an automated PipelinePitatorkflow to retain

compounds according to the following criteria: (1) molecular
weight between 150 and 250, (2) H-bond acceptor count y
below six, H-bond donor count below three, number of
rotatable bonds below three, number of rings below three, _. ) -
Figure 11. Workflow for the preparation of data set 3 consisting

topological pOIfar S.urface area below 1207 and A!ng in 19 true actives (scaffolds extracted from cdk2 inhibitors of known
below 3. This filtering step afforded a total of 80 ligands, protein-bound PDB structure) and 2230 decoys.

which was further downsized by removing any compound

whose similarity (expressed by a Tanimoto coefficient on described from a public sétof 309 known cdk2 inhibitors
MDL public keys}®was higher than 0.75 to any other ligand  exhibiting an IG, value lower than 2&xM. Any decoy whose
when reading data set ligands by increasing molecular similarity expressed by a Tanimoto coefficient was higher
weight. A total of 42 ligands (Supporting Information Chart than 0.5 to any reference scaffold was discarded from the
1) were finally selected as sd files, ionized at physiological data set to afford a total of 2230 decoys, which were then

pH using Filter2® converted into 3-D mol2 filé$ with  merged with the 19 true active scaffolds in data set 3 (Figure
Corina?® and refined with 100 steps of Powel energy 11). Further processing (ionization, 3-D coordinates genera-
minimization using the TRIPOS force fietd. tion, and energy-refinement) was realized as described above

Data Set 2Four ligands have been chosen for each of 10 for ligand data sets 1 and 2.
selected pharmaceutically relevant targets (neuraminidase, Protein Setup. Protein and active site coordinates were
estrogen receptax, protein tyrosine phosphatase 1B, phos- directly extracted from the sc-PDB datab#sa readable
phodiesterease 4D, tryptophan synthase, ionotropic glutamaté®DB or MOL2 format for which ionization and tautomeric
receptor type 2, cyclin-dependent kinase 2, human carbonicstates were previously manually checked and corrected if
anhydrase II, thrombin, and cyclooxygenase-2) out of the necessary. For known PDB complexes, coordinates of polar
sc-PDB database. The 40 ligands were prepared for dockinghydrogen atoms were manually set in order to optimize
as previously described for data set 1. The molecular scaffold protein-ligand H bonds first and proteirprotein H bonds
of each of the 40 ligands was manually selected (Supportingin a second step.
Information Chart 2) and processed as for data set 1 and FlexX 1.13 Docking.Standard parameters of Fle3as
final 3-D coordinates saved in mol2 format. implemented in the 7.0 release of the SYBYL packagere

Data Set 3.A total of 52 known cdk2 inhibitors were used for the iterative growing and subsequent scoring of
retrieved from the sc-PDB database by a simple keyword- FlexX poses. Active site atoms were defined as previously
based search (SwissProt=P24491) and further clustered described in the sc-PDB databa3é\ receptor description
with the ClassPharmer 3.5 progrdusing medium homo-  file was automatically defined form the PDB coordinates of
geneity and no redundancy settings (Figure 11). Exact ring the hydrogen-free protein/active site coordinates and further
closure and exact atom match parameters were chosen tahecked for consistency of polar hydrogen positions and the
define a total of 19 maximum common substructures (MCS) tautomeric state of histidine side chains in FlexV. Formal
representing “true active” cdk2-targeted scaffolds (Supporting charges were assigned to ligand atoms. The top 30 solutions
Information Chart 3). Decoys were selected from the recently as scored by FlexXScore were retained and further stored
described SBI libraf totaling 21 393 MCS computed from in a single mol2 file.
ca. 900 000 druglike commercially available compounds. To  Glide 3.5 Docking. Glide SP calculatior8 were per-
avoid decoy and active sets describing non-overlapping formed with Impact version 3.%.The grid generation step
chemical spaces, a first filtering step was applied to the full requires MAE input files of both the ligand and active site
decoy data set to keep 3306 scaffolds with global propertiesincluding hydrogen atoms. The protein charged groups that
(molecular weight below 250, at least one H-bond donor and were not located in the ligand binding pocket nor involved
acceptor, and at least one aromatic ring) close to “true active” in salt bridges were neutralized using the Sclimger pprep
scaffolds. However, to ascertain whether decoy scaffolds script. Important metal ions and cofactors were included in
have a low probability to recognize the cdk2 ATP binding binding sites. The center of the grid enclosing box was
site and thus bias screening results, the pairwise similarity defined by the center of the bound ligand as described in
of all remaining 3306 decoys to 47 reference scaffolds was the sc-PDB entry. The enclosing box and bounding box
calculated using circular FCFP_4 fingerprifitfReference dimensions were fixed to 14 and 10 A, respectively. No
scaffolds were generated by ClassPharmer as previouslyfurther modifications were applied to the default settings. A
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total of 30 poses were saved for each ligand. the virtual screening of the test set (data set 3) whose decoys

Gold 3.1 Docking. The active site was defined to show no overlap with those of the training set.
encompass any protein atom included in a 10-A-radius sphere
centered on the center of mass of the bound ligand as ACKNOWLEDGMENT
descbed e orgnal sc F06 ent Deful seings o 1o wor was supponted by he LitSceatn (Gran
) P . ; LSHB-CT-2003-503337) programme of the European Com-
scoring function were used to retain 30 poses for each “gand-munity. We sincerely thank Marcel Verdonk and Suzanne
Surflex 1.2 Docking.Surflexé* employs an idealized active  Brewerton (Astex Technologies, U. K.) for critical reading
site called a protomdE built from the hydrogen-containing  of the manuscript.
protein mol2 file and based on protein residues that line the
active site (see the above definition) using standard param- Supporting Information Available: Chart 1 (data set
eters. Docking of the ligand was run using default settings. °f 42 low-molecular-weight ligands from the Protein Data

. Bank), Chart 2 (data set of 40 molecular scaffolds covering 10
The program returned up to 10 poses for each ligand. pharmacology relevant targets), and Chart 3 (data set of 19

cdk2-Targeted Virtual Screening. Compounds in data  cdk2 inhibitors of known PDB structure). This information is
set 3 were docked to the X-ray structure of human cdk2 available free of charge via the Internet at http://pubs.acs.org.
(PDB code: 1dm2) using the Gold v3.1 program as described
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