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Protein-ligand interaction fingerprints have been used to postprocess docking poses of three ligand data
sets: a set of 40 low-molecular-weight compounds from the Protein Data Bank, a collection of 40 scaffolds
from pharmaceutically relevant protein ligands, and a database of 19 scaffolds extracted from true cdk2
inhibitors seeded in 2230 scaffold decoys. Four popular docking tools (FlexX, Glide, Gold, and Surflex)
were used to generate poses for ligands of the three data sets. In all cases, scoring by the similarity of
interaction fingerprints to a given reference was statistically superior to conventional scoring functions in
posing low-molecular-weight fragments, predicting protein-bound scaffold coordinates according to the known
binding mode of related ligands, and screening a scaffold library to enrich a hit list in true cdk2-targeted
scaffolds.

INTRODUCTION

Fragonomics1,2 is a rapidly evolving drug discovery area
enabling the identification of efficient low-molecular-weight
hits3 by either X-ray diffraction4 or nuclear magnetic
resonance spectroscopy.5 A true advantage of this screening
method is that both hit identification and binding mode may
be derived simultaneously. By either growing or linking
selected fragments, nanomolar leads can then be designed
at an incomparable pace.6 Structural biology screening
however requires the setup of a fragment library (compen-
dium of low-molecular-weight compounds) by applying
knowledge-based7 and medicinal chemistry rules.8 Up to
now, these fragment libraries have no particular focus on
peculiar targets. Applying a computational protocol to select
the most suitable fragments for a given target would thus be
highly desirable to hasten the screening process and to open
this technology to academia. Molecular docking9 has now
been successfully used for a decade to predict the binding
mode of druglike compounds and screen large libraries.
However, the well-identified weakness of fast energy-based
scoring functions10 currently limits the systematic use of
docking to low-molecular-weight compounds. Very often,
one faces the situation where a continuum of poses of
comparable binding energy describes the possible interaction
of a fragment to its binding site, the scoring function being
unable to discriminate near-native from irrelevant poses
(Figure 1). Docking under pharmacophoric constraints may
slightly improve the situation regarding in silico fragment
screening,11 however still at relatively low accuracy.

To better address this problem, a much stronger emphasis
has been put recently on postdocking strategies than on more
accurate scoring functions. Docking poses can be challenged
for the consistency of topological descriptors (e.g., acces-
sibility of the ligand, holes along the protein-ligand
interface, and interaction mismatches)12 by consensus ap-

proaches involving either multiple scoring functions,13,14

docking tools,15 or alternative protein coordinates16 or by
combining docking to additional computational tools (e.g.,
Bayesian statistics,17 molecular mechanics,18 MM-PB GB/
SA methods,19,20 or quantum mechanics21). As an indicator
of the importance of postdocking issues, several standalone
programs (e.g., Silver,22 Post-Dock,23 and Viscana24) are now
dedicated to this task. Efficient postprocessing however
requires a considerable amount of pre-existing knowledge.* Corresponding author e-mail: didier.rognan@pharma.u-strasbg.fr.

Figure 1. X-ray (sticks) and Glide-predicted poses (gray lines) of
a small molecular weight fragment (adenine) to phosphodiesterase
4D. The fragment pocket is delimited by a white surface and X-ray
fragment coordinates extracted from adenosine monophosphate
(PDB entry 1tb7).
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Many postdocking strategies are thus usually target- and/or
project-dependent.

In order to rely on simple, robust but efficient postdocking
processing, we herewith propose the use of molecular
interaction fingerprints (IFP) for prioritizing the most relevant
poses for either low-molecular-weight fragments or molecular
scaffolds. Practically, IFPs are simple bit strings that convert
3-D information about protein-ligand interactions into
simple 1-D bit vector representations that can be quickly
compared by the use of traditional metrics (e.g., Tanimoto
coefficient or Euclidian distance). Usage of IFPs has been
recently pioneered by Biogen Idec.25 with a particular focus
on protein kinases and has previously shown in either
residue-based25 or atom-based implementations26,27 to out-
perform conventional scoring functions in predicting correct
poses for druglike compounds. Their utility in fragment
docking is however still unknown. To assess their utility as
postdocking filters, three sets of low-molecular-weight
fragments and scaffolds have been docked to their cognate
Protein data Bank (PDB) targets using four popular docking
tools28 (FlexX,29 Gold,30 Glide,18 and Surflex31). Using a
Tanimoto metric (Tc-IFP) measuring the similarity of
predicted to X-ray IFP, we unambiguously show that (i) this
descriptor is better suited to quantify docking success than
the widely used root-mean-square deviation (RMSD) crite-
rion and (ii) scoring poses by decreasing Tc-IFP outperforms
conventional scoring functions in discriminating near-native
poses from decoys and enriching a hit list in “true active”
scaffolds when screening a scaffold library for cdk2
inhibitors.

RESULTS

The first benchmark on 42 low-molecular-weight PDB
ligands (Chart 1, Supporting Information) was set up to
answer a simple question:are current docking tools suitable
to pose low-molecular-weight fragments?

All 42 fragments were docked to their cognate proteins
using four docking tools (FlexX, Glide, Gold, and Surflex).
Corresponding compounds were prefiltered from the sc-PDB
database32 according to “fragmentlike” filters (see the
Computational Methods). As expected and previously re-
ported for “druglike” compound data sets,14 no relationships
could be found between the docking score and the RMSD
to the true X-ray pose (data not shown).

When the RMSD to the X-ray pose is compared to the
herein introduced Tc-IFP value (see the mathematical defini-
tion in the Computational Methods section), better correla-
tions are observed (Figure 2A). As expected, Tc-IFP
increases when RMSD decreases. Plotting average RMSD
values for poses within a defined Tc-IFP interval suggests
that a Tc-IFP threshold of 0.60 corresponds to the widely
used RMSD threshold of 2.0 Å for quantifying docking
success.29,30 However, the RMSD to Tc-IFP dependency
varies across docking tools (Figure 2B). FlexX, Gold, and
Surflex poses exhibit moderate relationships between RMSD
and Tc-IFP (0.70< |r| < 0.77 and 420< n < 1260), which
is not the case of Glide, for which the relationship is poor
(|r| ) 0.57 andn ) 974). The higher tendency of FlexX to
generate poses with Tc-IFP values of 0 is noticeable and
corresponds to the well-documented tendency of this docking
tool to generate poses at the periphery of the binding site.28

When the above-defined thresholds were used, poses could
be classified in four categories assuming that the attribute
“positiVe” describes poses with a Tc-IFP value above 0.6
and that the attribute “true” describes poses for which RMSD
and Tc-IFP agree: true positives (RMSDe 2 Å and Tc-
IFPg 0.6), true negatives (RMSD>2 Å and Tc-IFP< 0.6),
false positives (RMSD> 2 Å and Tc-IFPg 0.6), and false
negatives (RMSDe 2 Å and Tc-IFP< 0.6). Whereas true
positives and negatives describe the majority of poses, there
is still a significant number of false negatives and, to a much
lesser extent, some false positives from all docking programs
(Figure 2B and Table 1). The percentages of false positives
(7.5% on average) and false negatives (ca. 12%) are relatively
stable across the various docking tools used herein (Table
1). From a pure statistical point of view, Gold and Surflex
generate the best set of poses (highest proportion of true
positives) and consequently the lowest number of true
negatives (Table 1). Whereas true positive and true negative
poses are straightforward to analyze, false poses require more
attention. An exhaustive analysis of the latter poses indicate
that false positives are usually planar molecules with
symmetry or pseudo-symmetry axes exhibiting high RMSD
values whereas most interactions to the target are conserved
(e.g., Figure 3A). Conversely, a slight translation of a
predicted pose with respect to the true X-ray pose can result
in false positives where a partial or complete loss of protein-
ligand interactions (e.g., Figure 3B) does not much affect
the RMSD value. From here on, the success of docking will
thus be quantified by using only the Tc-IFP metric that
faithfully reproduce observed molecular interactions in the
reference X-ray structures. For the present data set, we
considered a docking to be successful if at least 60% of the
intermolecular interactions observed in the X-ray structure
(Tc-IFP> 0.6) are reproduced by the docking program. As
previously noticed (Figure 2A), this threshold roughly
corresponds to a 2.0 Å RMSD cutoff.

Whatever the docking engine, using the docking score as
a criterion to rank low-molecular-weight fragments is not
satisfactory because only modest success rates can be
reported (from 40% for FlexX to 70% for Glide; Figure 4).
This did not imply that satisfactory solutions were not
generated in the set of predicted poses. Hence, when the Tc-
IFP scoring function (in the present case, the Tc-IFP of each
pose is computed with respect to the X-ray pose) is used,
much higher success rates are observed (from 70% for FlexX
up to 95% for Glide; Figure 4). As expected, picking the
lowest RMSD solution always performs worse than selecting
the best Tc-IFP pose, confirming that RMSD is not the best
possible criterion for selecting the best pose available.
Although the scope of the study is not to compare docking
tools, we can notice that Glide is remarkably well-suited to
dock small fragments despite the moderate utility of its
internal Glidescore scoring function.

The second benchmark was aimed at answering the
following question: giVen the known binding mode of a
molecular scaffold, is it possible to successfully dock
bioisosteric scaffolds sharing the same target and binding
site?

We wanted to investigate scaffold docking in a scaffold-
hopping context, which means predicting the binding mode
of a given scaffold A from the known binding mode of a
bioisosteric scaffold B. Therefore, we needed several targets
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of pharmaceutical interest for which there is enough scaffold
diversity among cocrystallized PDB ligands. Looking at the
in-house sc-PDB database,32 which is a subset of the PDB
for which only proteins with druggable binding sites are
stored, we could find 10 targets satisfying these conditions
(neuraminidase, estrogen receptorR, protein tyrosine phos-
phatase 1B, phosphodiesterase 4D, tryptophan synthase,
ionotropic glutamate receptor type 2, cell division protein
kinase 2, carbonic anhydrase type 2, thrombin, and cy-
clooxygenase type 2). Different scaffolds were considered
for each of 10 therapeutically relevant human targets from

known sc-PDB ligands.32 For each target, heterocyclic
scaffolds representing roughly 50% of the corresponding full
compounds, sharing the same location in the binding site,
and exhibiting a wide array of intermolecular interactions
were manually selected. In order to design a data set of
similar size to the previous database of low-molecular-weight
fragments, four different scaffolds were thus chosen for each
target to yield a final data set of 40 scaffolds (Chart 2,
Supporting Information).

To closely mimic real-life situations, each pose for a
particular scaffold was fingerprinted and cross-scored with

Figure 2. Plotting RMS deviations from the X-ray pose versus similarity of interaction fingerprints Tc-IFP (expressed by a Tanimoto
coefficient calculated from IFPs generated by the X-ray and the predicted pose) for a set of 42 low-molecular PDB ligands (data set 1). (A)
Average RMSD and standard deviation values (error bars) for increasing Tc-IFP intervals (data collected for a total of 3924 poses from
four docking tools). (B) Docking program dependency of RMSD to Tc-IFP. Poses located in the upper-right part are considered as false
positives (high RMSD, high Tc-IFP), and poses located in the lower-left part are considered as false negatives (low RMSD, low Tc-IFP).
Poses in the upper-left part are true negatives (high RMSD, low Tc-IFP), whereas poses in the lower-right part are true positives (low
RMSD, high Tc-IFP).
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respect to the fingerprints generated from the three other
scaffolds describing ligands of the same target. The best of
these three scores was then saved for each entry and used to
assess docking success (Tc-IFPg 0.6) or a lack thereof.

Again, scoring by interaction fingerprint similarity always
outperforms energy-based scoring functions for all docking
programs used herein (Figure 5). Although some differences
might be observed among the different docking tools, the
general trend is conserved. The success rate rises from ca.
60% for conventional scoring functions to ca. 85% when
using Tc-IFP as a scoring metric. Furthermore, scoring by
similarity of interaction fingerprints selects significantly
better poses than a simple topological RMSD criterion would
do (Figure 5). Despite the low number of chemotypes
investigated for each target and the limited value of statistics
derived thereof, a decomposition of success rate by target
(Figure 6) clearly shows that postprocessing docking poses
by Tc-IFP has a considerable value for difficult targets (e.g.,
ionotropic glutamate receptor type 2 for FlexX, Glide, and
Surflex; human carbonic anhydrase, neuraminidase, and
thrombin for Glide; COX-2 for Gold; and neuraminidase and
phosphodiesterase 4D for Surflex). For easier test cases (e.g.,
cdk2, estrogen receptorR), conventional scoring by energy
performs relatively well and the added-value of IFPs is
marginal.

The third benchmark was even more stringent and set up
to checkwhether scaffolds could be efficiently prioritized
by a structure-basedVirtual screening approach. A library
of 2249 scaffolds (data set 3, see Computational Methods)
containing 19 true actives (scaffolds manually extracted from
true cdk2 inhibitors; Supporting Information Chart 3) was
set up and docked to one X-ray structure of human cdk2
(PDB entry 1dm2) using the Gold3.1 program. Various
strategies were used to rank scaffolds. Two of them (Gold-
score and Chemscore) are energy-based scoring functions
typically used with Gold; the third one is the Tc-IFP metric
(using as reference a single IFP derived from each of the 19
true scaffolds); the fourth one is a Laplacian-modified
Bayesian classifier33 using multiple references (all 19 IFPs
from true actives, see Computational Methods). The area
under the curve (AUC) of receiver-operating characteristic
(ROC) plots34 derived from the four scoring lists was used
as an indicator of both the sensitivity (how many true
positives are recovered) and the specificity (how many false
positives are recovered) of the scoring method (Figure 7).
Both energy-based scoring functions (Goldscore and Chem-
score) performed worse than random picking (ROC AUC
< 0.5). Interestingly, Tc-IFP scoring dramatically improves
the in silico screening accuracy whatever IFP is used as a
reference (Figure 7). However, the AUC value considerably

varies with the reference IFP from 0.5 (e.g., 1di8 and 1jvp)
to 0.78 (1e1x). Among the 19 IFP references, five can be
considered as good (AUC> 0.7) and 11 as fair (0.6>AUC
>0.7). Last, the two-class Bayesian categorization model
offers the best possible performance with an AUC value of
0.78. When the corresponding ROC plots (Figure 8) are
compared, the Bayesian model is by far the most adequate
screening strategy. It allows the recovery of 14 out of the
19 true scaffolds (74%) while selecting only 25% of the
random decoys (557 scaffolds).

DISCUSSION

The contribution of chemoinformatics to fragonomics has
up to now been limited to the design of appropriate fragment
libraries using various knowledge-based principles.7,8 Pri-
oritization of the most interesting fragments using a structure-
based approach has been hampered by the limited accuracy
of fast empirical scoring functions which are usually unable
to discriminate near-native fragment poses from decoys
(Figure 1). We therefore propose an alternative nonener-
getical approach consisting first in converting protein-ligand
interactions in a bit vector called an interaction fingerprint
and second in comparing the predicted IFP to a given
reference. The interaction fingerprint concept (SIFt: struc-
tural interaction fingerprint) has recently been exemplified
at Biogen Idec.35 in a series of elegant studies focused on
protein kinases and has shown several promising features:
(i) enhancing the quality of pose prediction in docking
experiments,25 (ii) clustering protein-ligand interactions for
a panel of related inhibitors according to the diversity of
their interaction with a target subfamily,36 and (iii) assisting
target-biased library design.37 Herewith, we applied IFPs to
fragment docking with the hope of bypassing classical
problems associated with energy-based scoring functions.
IFPs are computed on the fly from 3-D coordinates of both
the protein and the ligand using an in-house-developed
algorithm utilizing OpenEye’s OEChem library38 and a set
of topological rules (Tables 2-4) for defining a panel of
eight possible interactions (H-bond, weak H-bond, ionic,
hydrophobic, face-to-face aromatic, edge-to-face aromatic,
π-cation, and metal complexation). Our IFP implementation
varies significantly from that of Biogen because we do not
distinguish main-chain from side-chain protein atoms in
generating the residue-based fingerprint (this feature was
specifically designed at Biogen for protein-kinase inhibitors
because interaction with the main-chain atoms of the hinge
region is a crucial determinant of ATP-competitive inhibi-
tors39). Furthermore, we allow more interaction types than
the original SIFt approach (Tables 2 and 3).

Three different data sets have been used to benchmark
the use of IFP in low-molecular-weight compound docking.
The first one (data set 1) is a compendium of 42 fragments
of known protein-bound X-ray coordinates from the sc-PDB
database,32 which comprises structural information about
protein, active-site, and cognate PDB ligands which over-
come a series of intensive filters (resolution limit, drugga-
bility of the binding site, druglikeness of the ligand, etc.)

Because we did not want to bias our approach toward a
particular docking tool, four among the best docking
programs (FlexX, Glide, Gold, and Surflex)28,40,41have been
used to generate a set of poses for each ligand. A first aspect

Table 1. Classification of Fragment Poses for Four Docking
Programs

FlexX Glide Gold Surflex

TPa 16 13 40 30
FPb 2 12 9 7
FNc 14 9 11 14
TNd 68 66 40 49

a True positives (RMSDe 2 Å and Tc-IFPg 0.6). b False positives
(RMSD > 2 Å and Tc-IFPg 0.6). c False negatives (RMSDe 2 Å
and Tc-IFP < 0.6). d True negatives (RMSD> 2 Å and Tc-IFP
< 0.6).
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of the present work was to use a proper metric to estimate
docking success. Usually, a RMSD threshold of 2 Å has been
used as an indicator of pose accuracy. We felt that this global
metric was not really suited to the basic aim of our study
because it focuses on ligand coordinates only and thus loses
information about the kind of intermolecular interactions
which have been reproduced or not (whether a particular
residue-based bit string is recovered or not). Using the set
of 3924 poses generated for data set 1, we wished first to
look at relationships between computed RMSD and the
similarity of IFPs (Tc-IFP) using in both cases the X-ray
pose as a reference. As expected, there is an overall
relationship between RMSD and Tc-IFP (Figure 2A,B). In
many cases, a low RMSD correlates with a high Tc-IFP and
vice versa. However, there is a significant number of cases

for which the RMSD value is misleading. It is either much
too high (false positives, Figure 3A) or much too low (false
negatives, Figure 3B) with regard to the key protein-ligand
interaction which is really reproduced. Whereas the Tc-IFP
metric is clearly better than the RMSD criterion for handling
false positives (7.5% of all poses), the advantage of the herein
introduced metric is more questionable for false negatives
(12% on average) where a translation of the predicted pose
with respect to the X-ray pose is usually seen (Figure 3B).
A total of 7% of the false negatives show a RMSD lower
than 0.5 Å and cannot be considered as misdocked because
energy refinement of the latter poses or rescoring using other
scoring functions based on different physicochemical prin-
ciples may easily transform false negatives into true positives.
It is less likely that refining poses with a RMSD higher than

Figure 3. Prototypical examples of mismatches between RMSD and Tc-IFP, for two low-molecular-weight ligands (A: 3H-imidazo[2,1-
I]purine to 3-methyladenine DNA glycosylase, PDB entry 1pu8; B: 9-methylguanine to dihydroneopterin aldolase, PDB entry 1rrw). The
bound ligand is shown as sticks (cyan carbon, X-ray pose; green carbon, predicted pose).

Figure 4. Posing accuracy (expressed by Tc-IFP) of 42 low-molecular-weight ligands (data set 1) obtained with FlexX, Glide, Gold, and
Surflex. For each complex, three poses are stored: the best energy pose (top-ranked by the scoring function, green lines), the best Tc-IFP
pose (highest IFP similarity to the X-ray pose, red lines), and the best RMSD pose (closest RMSD to the X-ray pose, blue lines).
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1 Å would lead to a situation where most of the missing
interactions could be recovered. In that case, we believe that
the Tc-IFP is more faithful than the RMSD value. This
represents the majority (68%) of observed false negatives.
For the remaining poses (RMSD between 0.5 and 1 Å), a
fuzzier definition of rules used to detect intermolecular
interactions could be implemented (e.g., tolerating an H-bond
distance up to 4 Å). However, our experience suggests that

broadening these rules brings much more noise than the true
signal and therefore has not been implemented in our IFPs.
Altogether, only 146 poses out of 3924 (3.7%) sharing a
RMSD above 1 Å and a Tc-IFP below 0.6 are better
described using RMSD than using the Tc-IFP criterion.
Altogether, it is therefore strongly advisable to omit the
RMSD descriptor to quantify docking success. From here
on, the Tc-IFP value will be used only using a 0.6 threshold

Figure 5. Posing accuracy (expressed by the highest Tc-IFP to any of the three other reference scaffolds) for 40 scaffolds (data set 2)
obtained with FlexX, Glide, Gold, and Surflex. For each complex, three poses are stored: the best energy pose (green lines), the best Tc
pose (red lines), and the best RMSD pose (blue lines).

Figure 6. Decomposition of the docking accuracy of 40 scaffolds for 10 pharmaceutical targets. For each complex, three poses are stored:
the best energy pose (white bars), the best Tc-IFP pose (gray bars), and the best RMSD pose (back bars).
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for quantifying success. It can be seen as a quantitative
descriptor for what Kroemer et al. called an interaction-based
analysis of contacts in a recent study,42 coming to the same
conclusion.

There is a clear advantage in using Tc-IFP for ranking
fragment poses as illustrated by results obtained for data set
1 (Figure 4). Whatever the docking tool, scoring by Tc-IFP
is largely superior to energy-based pose ranking. Docking
success rises from ca. 40-70% to 70-95% if a Tc-IFP
threshold of 0.6 is applied (60% of protein-ligand interac-

tions are recovered in the predicted pose). Although the
individual performance of docking tools varies according to
the data set and probably to the individual program settings
(no particular emphasis was put in fine-tuning program-
specific settings for this particular data set), the benefit is
independent of the docking program used. This is a very
important feature because predicting which docking tool is
going to perform well is context-dependent and very dif-
ficult.28 Using a robust docking tool, the user can thus be
sure that the Tc-IFP metric will rank docking poses better
than a conventional scoring function. Furthermore, comparing
RMSD and Tc-IFP rankings clearly shows that the best
RMSD poses are definitely not the best to select among the
set of proposed solutions. There are still some cases totally
unsuitable for fragment docking (Tc-IFP< 0.3) whatever
the scoring function. These difficult cases correspond to three
main situations (Figure 9): (i) the binding site is highly polar,
and different anchors are equally good at positioning the
fragment (e.g., 1aj0); (ii) the binding site is almost hydro-
phobic, and very few polar anchors are available to position
the fragment (e.g., 1qy2); (iii) the binding site is largely open
to solvent and the fragment partially buried into the protein
(e.g., 1rrw, 1tuv, 1yvm, and 3pce).

This first computational experiment suggests that the main
problem in fragment docking is usually not sampling the
active site space for generating reliable poses (e.g., 95% of
Glide poses are correct; Figure 4B) but simply ranking them.
Clearly, one cannot exclude misscoring issues for the ca.
20% of wrong answers using FlexX, Gold, or Surflex (Figure
4) where constrained docking using the Tc-IFP metric as
the internal scoring function (currently under investigation
in our group) is likely to improve the docking accuracy.

When a given set of available poses is used, postprocessing
docking outputs by computing IFPs and comparing them to
a reference significantly enhance the quality of the first-
ranked pose. Of course, it is obvious that self-scoring (scoring
a protein-ligand IFP against itself) will outperform scoring
by energy as the computational experiment focuses on Tc-
IFP values. However, we here wanted to ascertain that,
among all predicted poses, some are really close to the
experimentally observed solution and that there is no need
to constrain the docking algorithm.

Figure 7. Accuracy of receiver-operating characteristic (ROC) plots
expressed by the area under the curve (AUC) for various virtual
screening protocols using either energy-based scoring functions (GS,
Goldscore; CS, Chemscore) or the Tc-IFP metric with a single IFP
(1aq1 to 1y8y) generated from the corresponding PDB structures
and a user-defined scaffold definition (Supporting Information Chart
3) or multiple references (NB: Naı¨ve Bayesian model trained on
19 reference IFPs and 2291 decoys).

Figure 8. Receiver-operating characteristic (ROC) plot for GOLD
docking of 22 249 scaffolds (data set 3) to the X-ray structure of
human cdk2 (PDB entry 1dm2) using Tc-IFP similarity score
(1dm2, single reference; NB, Bayesian model) and two scoring
functions (Goldscore and Chemscore) to discriminate the 19 true
active scaffolds from 22 230 decoys.

Table 2. Atom Flags Used in Determining IFPsa

flag SMARTS definition

donor [O,N,S][H]
acceptor [O,N,*-;!+]
cation [*+]
anion [*-]
aromatic [a;R]
hydrophobe [C,S,F,Cl,Br,I]
weak acceptor [a:a,A)A,A#A,S+0]
weak donor [c,CX3,CX2][H]
metal [Ca,Cd,Co,Cu, Fe,Mg,Mn,Ni,Zn]

a (Weak) H-bond donors and acceptors have been determined
according to Steiner.65

Table 3. Interaction Fingerprint Definition

bit
vector

position protein atom flaga ligand atom flag interactionb

1 hydrophobe hydrophobe hydrophobic
2 aromatic aromatic face-to-face
3 aromatic aromatic edge-to-face
4 donor acceptor H-bond
5 acceptor donor H-bond
6 cation anion ionic
7 anion cation ionic
8 weak donor acceptor weak H-bond

weak donor weak acceptor
donor weak acceptor

9 acceptor weak donor weak H-bond
weak acceptor weak donor
weak acceptor donor

10 cation or aromatic aromatic or cationπ-cation
11 metal acceptor metal complexation

a See Table 1 for description of atom flags.b See Table 3 for
description of rules used to identify protein-ligand interactions.

OPTIMIZING FRAGMENT AND SCAFFOLD DOCKING J. Chem. Inf. Model., Vol. 47, No. 1, 2007201



In a second set of experiments, cross-scoring was ad-
dressed by selecting 40 scaffolds from pharmaceutically
relevant target ligands (data set 2). For each of the 10 selected
targets, four different scaffolds were chosen and each scaffold
docked into its cognate protein but scored according to the
IFP generated by the three others. This computational
experiment is therefore closer to a more realistic situation
where one wants to prioritize scaffold poses on the basis of
the knowledge of bioequivalent scaffolds. We therefore chose
scaffolds sharing the same binding site for a particular target.
Again, scoring by Tc-IFP outperforms scoring by conven-
tional scoring functions (please note that the standard scoring
function of each docking program was used and that no
rescoring attempt with external functions was tested). Still,
using a 0.6 similarity threshold, docking success increases
from ca. 60% to 85% when using the Tc-IFP scoring metric
(Figure 5). As for the previous data set of fragments, scoring
by Tc-IFP also outperforms scoring by RMSD, which
justifies the use of the similarity metric for selecting the
appropriate poses. Whereas FlexX was superior in generating
appropriate poses for scaffolds than for fragments, the
opposite observation is seen for Glide and Gold, Surflex
showing very similar accuracy for both data sets (Figures 4
and 5). The noticeable differences in the individual perfor-
mance of docking tools across both test sets are probably
data-set-dependent. More importantly, the same trend is
observed: selecting poses ranked by the Tc-IFP metric is
the most reliable strategy. This assumption is particularly
justified for difficult targets (e.g., ionotropic glutamate
receptor type 2 and phosphodiesterase 4D) where energy-
based scoring functions usually fail. The binding cleft of the
ionotropic glutamate receptor type 2 is lined by polar residues
plus two important water molecules, which renders the

docking of the corresponding scaffolds very difficult because
many orientations can fulfill H-bonding requirements. For
phosphodiesterase ligands, docking algorithms tend to locate
polar groups of the scaffolds toward the metal binding site
and not the Gln369 pocket. It is therefore logical that
significant failures occur for the latter active sites.

In a last series of computational experiments, a structure-
based virtual screening was undertaken to retrieve scaffolds
likely to bind to the human cdk2 target. This enzyme was
chosen as the test set for several reasons: (i) it seems to be
an adequate target for scaffold docking (recall Figure 6); (ii)
it has previously been used for studying the virtual screening
accuracy of low-molecular-weight inhibitors;11 (iii) it has
been cocrystallized with various druglike ATP-competitive
inhibitors sharing the same binding site,43 thus offering the
possibility to study the influence of the reference IFP in the
Tc-IFP scoring. Gold was used as the docking tool for this
virtual screening experiment to compare our results with the
previously published virtual screening data on low-molecular-
weight cdk2 inhibitors which was also realized using Gold.11

As expected from this latter study,11 energetic scoring
functions are not suited to distinguish “true cdk2” scaffolds
from decoys (Figures 7 and 8). The performance of Chem-
score was close to that of random picking, whereas that of
Goldscore was even worse. This did not mean that good
poses have not been generated because scoring them by
similarity of their IFP to that of a given reference gave much
better results (Figures 7 and 8). However, using the Tc-IFP
metric requires first the selection of an IFP reference which
might not be an easy task. Hence, human cdk2 has been
cocrystallized with various inhibitors all binding to the ATP
binding site and exhibiting different chemotypes.43 One may
thus use several X-ray structures for generating the reference

Table 4. Geometric Rules Used in Determining IFPs

interaction rule 1a rule 2b

a D, H-bond donor;A, H-bond acceptor;+, cation;-, anion;Y, hydrophobe;ac, geometric center of an aromatic ring;M, metal.b H, hydrogen;
n, normal to the aromatic ring.
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IFP. For human cdk2, the problem is complicated by the
fact that the binding site may exist in either a “closed” or
“opened” form according to the conformation of lining
residues (e.g., Lys33 and Asp145). Because we aimed to
dock very low molecular weight ligands (scaffolds) into the
protein structure, a closed form (PDB entry 1dm2) previously
shown to be acceptable for docking many cdk2 ligands43 was
used here.

Scaffold ranking using energy-based scoring functions
(Goldscore and Chemscore) was shown to be even worse
than random picking, whereas the usage of IFPs significantly
enhances the in silico screening accuracy (Figures 7 and 8).
Interestingly, most of the single IFP references available
allowed a significant enrichment of virtual hits in true cdk2-
targeted scaffolds by using the Tc-IFP scoring function
(Figure 7). Although the 1dm2 protein coordinates have been

Figure 9. Difficult test cases for fragment docking. The X-ray pose (white-carbon sticks) is shown along with predicted poses (FlexX,
cyan-carbons sticks; Gold, green-carbon sticks; Surflex, magenta-carbon sticks). The active site is represented by a solid surface and important
protein residues by wire frames. Besides carbon atoms, the atom color coding is the following: oxygen, red; nitrogen, blue; sulfur, yellow.
(A) 1aj0: The aniline moiety of the ligand is well-positioned, but the interactions of the sulfonamide group with Arg63 and Arg235 are not
reproduced by FlexX, which prefers to anchor the sulfonamide to Arg63 and Arg255. (B) 1qy2: The ligand is embedded in a very apolar
subsite with a single H bond to the pyrazine fragment, docked outside the binding site by FlexX. (C) 1rrw: The interaction of the 2-aminouracyl
ring with Glu74 is reproduced but not the location of the partially buried imidazole ring, which is forced by Gold to H-bond to Lys100. (D)
1yvm: The thiazole ring is H-bonded to His79 and His178 in the X-ray structure with a benzimidazole ring partially buried upon binding.
Surflex places the benzimidazole ring deeper in the active site and predicts H-bonding of the benzimidazole moiety to His79 and His174.
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used, the 1dm2 scaffold was not the best possible choice
for generating the most valuable reference IFP (Figure 8).
Only three reference IFPs (1di8, 1jvp, and 1p2a) were
unsuitable to retrieve true active scaffolds. Clustering all
reference IFPs indicates that two of the poor IFPs are close
together (1jvp and 1p2a) at the bottom of the IFP tree (Figure
10). Interestingly, the corresponding three scaffolds interact
with the Asp145 side chain via either hydrophobic interac-
tions (1jvp and 1p2a) or hydrogen bonding (1di8), two
features which are absent in other reference IFPs (Figure
10).

When a Bayesian model trained with known binding
modes of a few actives and predicted poses of presumed
inactives is used, significant enrichments in true active
scaffolds can be obtained by a standard structure-based in
silico screening approach without having the need to
explicitly define one reference (Figure 7). Assuming that a
proper scoring metric has been found to prioritize very low
molecular weight compounds, the true advantages of docking
scaffolds instead of full compounds are double: (i) less
compounds have to be docked to cover a defined chemical
space, and therefore a larger proportion of virtual hits can
be selected and experimentally tested; (ii) it is a very
straightforward computational approach to scaffold hopping44

and library design. Our results on cdk2-targeted scaffold
docking compares very favorably with a previous pharma-
cophore constrained docking of low-molecular-weight cdk2
inhibitors,11 although caution should be given to such
comparisons because of the different settings in both
computational experiments.

CONCLUSIONS

We herewith propose the usage of IFPs instead of the
widely used RMSD metric to estimate docking success. IFPs
focus on protein-ligand interactions and not on ligand
coordinates and represent, therefore, a logical description of
docking poses. From the first two benchmark data sets used
in this study, we propose a Tc-IFP threshold of 0.6 for
discriminating acceptable from bad solutions. However, only
future applications of this new metric on additional bench-
marks will help to refine the proposed threshold. Our
docking/scoring approach is slightly different from several
constrained docking protocols published so far.30,45,46In the
present case, docking is totally unconstrained and poses are
simply postprocessed to select the ones in agreement with
some reference interaction fingerprint(s) which need not to
be derived from the compound to dock. Our protocol is also
different in spirit from template matching,46 which attempts
to optimally fit one compound to a reference set of
coordinates without any guarantee that protein-ligand
interactions are going to be conserved.

IFPs present the noticeable advantage of reconciling
structure-based design with ligand-based data mining. Hence,
1-D fingerprints have heavily been investigated in the field
of ligand-based virtual screening,47 notably the usage of
single48 versus multiple baits,49 fingerprint scaling,50 and
activity-centered fingerprints.51 Fingerprints are also well-
suited for applying machine learning methods52 (neural
networks, Bayesian statistics, support vector machines,
recursive partitioning, and binary kernel discrimination) and
taking the maximal advantage of multiple references.53 Using
IFPs is thus a fuzzy but very promising way of selecting

Figure 10. Phylogenic tree obtained by neighbor-joining clustering of 19 reference IFPs (Supporting Information Chart 3) generated from
known PDB structures. A bit-to-bit comparison was applied to the 133-bit string to measure distance between two IFPs. On-bits are displayed
for each of the 19 residues of the human cdk2 active site with the following color coding: blue, hydrophobic interactions; green, aromatic
interactions; red, hydrogen bonds. Bit vector positions are analogous to those indicated in Table 3. Branch lengths are proportional to the
distance (scale below the tree) between bit strings.
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virtual poses/hits satisfying user-defined prerequisites which
appear especially well-suited for fragment and scaffold in
silico screening and thus better link structure-based screening
to fragment-based drug discovery.

COMPUTATIONAL METHODS

Ligand Setup.Three ligand databases have been prepared
as follows:

Data Set 1.Starting from 2721 “druglike” compounds
extracted from the sc-PDB,32 a database of druggable binding
sites (http://bioinfo-pharma.u-strasbg.fr/scPDB/) from the
Protein Data Bank,54 a first topological filtering was estab-
lished using an automated PipelinePilot55 workflow to retain
compounds according to the following criteria: (1) molecular
weight between 150 and 250, (2) H-bond acceptor count
below six, H-bond donor count below three, number of
rotatable bonds below three, number of rings below three,
topological polar surface area below 120 Å,2 and AlogP
below 3. This filtering step afforded a total of 80 ligands,
which was further downsized by removing any compound
whose similarity (expressed by a Tanimoto coefficient on
MDL public keys)56 was higher than 0.75 to any other ligand
when reading data set ligands by increasing molecular
weight. A total of 42 ligands (Supporting Information Chart
1) were finally selected as sd files, ionized at physiological
pH using Filter2,38 converted into 3-D mol2 files57 with
Corina,58 and refined with 100 steps of Powel energy
minimization using the TRIPOS force field.57

Data Set 2.Four ligands have been chosen for each of 10
selected pharmaceutically relevant targets (neuraminidase,
estrogen receptorR, protein tyrosine phosphatase 1B, phos-
phodiesterease 4D, tryptophan synthase, ionotropic glutamate
receptor type 2, cyclin-dependent kinase 2, human carbonic
anhydrase II, thrombin, and cyclooxygenase-2) out of the
sc-PDB database. The 40 ligands were prepared for docking
as previously described for data set 1. The molecular scaffold
of each of the 40 ligands was manually selected (Supporting
Information Chart 2) and processed as for data set 1 and
final 3-D coordinates saved in mol2 format.

Data Set 3.A total of 52 known cdk2 inhibitors were
retrieved from the sc-PDB database by a simple keyword-
based search (SwissProt id) P24491) and further clustered
with the ClassPharmer 3.5 program59 using medium homo-
geneity and no redundancy settings (Figure 11). Exact ring
closure and exact atom match parameters were chosen to
define a total of 19 maximum common substructures (MCS)
representing “true active” cdk2-targeted scaffolds (Supporting
Information Chart 3). Decoys were selected from the recently
described SBI library60 totaling 21 393 MCS computed from
ca. 900 000 druglike commercially available compounds. To
avoid decoy and active sets describing non-overlapping
chemical spaces, a first filtering step was applied to the full
decoy data set to keep 3306 scaffolds with global properties
(molecular weight below 250, at least one H-bond donor and
acceptor, and at least one aromatic ring) close to “true active”
scaffolds. However, to ascertain whether decoy scaffolds
have a low probability to recognize the cdk2 ATP binding
site and thus bias screening results, the pairwise similarity
of all remaining 3306 decoys to 47 reference scaffolds was
calculated using circular FCFP_4 fingerprints.55 Reference
scaffolds were generated by ClassPharmer as previously

described from a public set61 of 309 known cdk2 inhibitors
exhibiting an IC50 value lower than 25µM. Any decoy whose
similarity expressed by a Tanimoto coefficient was higher
than 0.5 to any reference scaffold was discarded from the
data set to afford a total of 2230 decoys, which were then
merged with the 19 true active scaffolds in data set 3 (Figure
11). Further processing (ionization, 3-D coordinates genera-
tion, and energy-refinement) was realized as described above
for ligand data sets 1 and 2.

Protein Setup. Protein and active site coordinates were
directly extracted from the sc-PDB database32 in readable
PDB or MOL2 format for which ionization and tautomeric
states were previously manually checked and corrected if
necessary. For known PDB complexes, coordinates of polar
hydrogen atoms were manually set in order to optimize
protein-ligand H bonds first and protein-protein H bonds
in a second step.

FlexX 1.13 Docking.Standard parameters of FlexX29 as
implemented in the 7.0 release of the SYBYL package57 were
used for the iterative growing and subsequent scoring of
FlexX poses. Active site atoms were defined as previously
described in the sc-PDB database.32 A receptor description
file was automatically defined form the PDB coordinates of
the hydrogen-free protein/active site coordinates and further
checked for consistency of polar hydrogen positions and the
tautomeric state of histidine side chains in FlexV. Formal
charges were assigned to ligand atoms. The top 30 solutions
as scored by FlexXScore were retained and further stored
in a single mol2 file.

Glide 3.5 Docking. Glide SP calculations18 were per-
formed with Impact version 3.5.62 The grid generation step
requires MAE input files of both the ligand and active site
including hydrogen atoms. The protein charged groups that
were not located in the ligand binding pocket nor involved
in salt bridges were neutralized using the Schro¨dinger pprep
script. Important metal ions and cofactors were included in
binding sites. The center of the grid enclosing box was
defined by the center of the bound ligand as described in
the sc-PDB entry. The enclosing box and bounding box
dimensions were fixed to 14 and 10 Å, respectively. No
further modifications were applied to the default settings. A

Figure 11. Workflow for the preparation of data set 3 consisting
in 19 true actives (scaffolds extracted from cdk2 inhibitors of known
protein-bound PDB structure) and 2230 decoys.
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total of 30 poses were saved for each ligand.
Gold 3.1 Docking. The active site was defined to

encompass any protein atom included in a 10-Å-radius sphere
centered on the center of mass of the bound ligand as
described in the original sc-PDB entry. Default settings of
the slower parameter set (“default 1”) and the Goldscore
scoring function were used to retain 30 poses for each ligand.

Surflex 1.2 Docking.Surflex31 employs an idealized active
site called a protomol,63 built from the hydrogen-containing
protein mol2 file and based on protein residues that line the
active site (see the above definition) using standard param-
eters. Docking of the ligand was run using default settings.
The program returned up to 10 poses for each ligand.

cdk2-Targeted Virtual Screening. Compounds in data
set 3 were docked to the X-ray structure of human cdk2
(PDB code: 1dm2) using the Gold v3.1 program as described
above (Gold docking). Both Goldscore and Chemscore
scoring functions were used to generate two independent sets
of 30 poses per ligand.

Interaction Fingerprint (IFP) Computation. IFPs are
generated from a list of docked poses and active site
coordinates using a C++ library and executables freely
available upon request to the authors. On the basis of a list
of atom flags (Table 2) inferred from OpenEye’s OEChem1.3
library, positions of a bit vector are switched either on or
off depending on whether or not predefined intermolecular
interactions (Table 3) agree with user-defined rules (Table
4). All geometric rules may be edited and saved in a
configuration file without a need to recompile the code. By
default, only the first seven bits which correspond to the most
frequent protein-ligand interactions are calculated. However,
the user may choose to compute less frequent interactions
(e.g., weak H bonds,π-cation interactions, and metal
complexation) and thus fill the remaining four positions in
the bit vector. Using a freely available C clustering library64

linked to our routine, IFPs may be clustered according to
various methods and then converted in dendograms for
visualizing the diversity of generated poses. In the present
work, only simple seven-bit-long strings were generated.
Measuring the distance between two IFPs was realized using
a simple Tanimoto metric (Tc-IFP) as follows:

where A∩ B is the number of switched-on bits common to
IFPs A and B and A∪ B is the sum of switched-on bits in
IFPs A and B.

Bayesian Classification of IFPs.A Laplacian-modified
Bayesian classifier33 was first trained by pooling 19 IFPs
generated from known X-ray poses of the 19 “true cdk2”
scaffolds embedded in data set 3 and 2291 Gold-predicted
poses for a set of 200 scaffold decoys randomly chosen from
the recently described SBI scaffold library60 but presenting
a molecular weight below 250. Those decoys were docked
to the 1dm2 coordinates as previously described. The
Bayesian learning model was derived by tagging the 19
X-ray-derived IFPs as “GOOD” and the 2291 predicted IFP
decoys as “BAD” using standard settings of the Bayesian
classifier in Pipeline Pilot 5.1.55 The model was then used
to classify IFPs computed from Gold poses obtained from

the virtual screening of the test set (data set 3) whose decoys
show no overlap with those of the training set.
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