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Abstract

The concomitant development of in silico screening technologies and of three-dimensional information on therapeutically relevant
macromolecular targets makes it possible to navigate in the structural proteome and to identify targets fulfilling user-defined queries.
This review illustrates some in-house recent advances in the development of target libraries and how they can be browsed to unravel
chemogenomic information.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Virtual screening of compound libraries (Schoichet,
2004) has recently gained considerable importance in early
hit finding programs, notably when technological or eco-
nomic hurdles disfavor experimental screening. Numerous
successful applications of either ligand-based (Bajorath,
2002) or structure-based (Kitchen et al., 2004) in silico
screening have been reported in the literature. Quite unex-
pectedly, the inverse paradigm still has not been deeply
investigated. Given a set of ligands, is it possible to prior-
itize their most likely targets for experimental validation?
Answering this question first requires the development of
a library covering the most reliable target space (Lipinski
and Hopkins, 2004). By target library, we mean here a col-
lection of macromolecules for which either the amino acid
sequence and/or three-dimensional (3-D) coordinates are
available and can be browsed using simple queries. Then,
an appropriate screening method has to be set up which
is able to select a panel of targets fulfilling requirements
imposed by either a ligand structure or a specific fingerprint
(Attwood et al., 2003) or an evolutionary trace (Lichtarge
et al., 1996). Once a target library has been developed, sev-
eral applications can be foreseen: (1) simply compare tar-
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gets and whenever possible relevant ligand binding sites,
(2) predict the most likely target(s) of a given ligand, (3)
predict a selectivity profile for either a target or a ligand,
(4) predict the ‘druggability’ of a given target from a struc-
tural point of view. All these issues require early answers in
the evaluation of drug discovery programs. We will try to
review each of these applications in the coming sections.

2. Setting up target libraries

When developing a target library, a first compromise
between available information (notably at the structural
level) and the therapeutical relevance of selected targets
has to be made. Many proteins for which fine structural
details are known (e.g. toxins, antibodies) are not ‘drugga-
ble’. Conversely, some important protein families for the
pharmaceutical industry (e.g. G-protein-coupled receptors)
are poorly understood at the 3-D level. Next, a scope has to
be assigned to the library. Which target space has to be cov-
ered? Last, which kind of data (amino acid sequences, 3-D
atomic coordinates) is browsed for defining a target list?

2.1. sc-PDB: a collection of active sites from the Protein

Data Bank

2.1.1. Setting up the database

To establish the proof-of-concept that a protein library
might be of screening interest, we have chosen the Protein
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Fig. 1. Flowchart for developing the sc-PDB databank (http://bioinfo-pharma.u-strasbg.fr/scpdb/scpdb_form.html).
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Data Bank (PDB) (Berman et al., 2000) as it is the major
3-D protein database for which experimentally determined
protein coordinates are available. Several protein–ligand
databases derived from the PDB have been recently
described (Golovin et al., 2005; Hendlich et al., 2003;
Kitajima et al., 2002; Kramer et al., 1999; Nissink
et al., 2002; Roche et al., 2001). Relibase (Hendlich
et al., 2003) easily allows retrieving protein–ligand com-
plexes from a user-defined query focusing on specific
molecular interactions. MSDsite (Golovin et al., 2005) is
a database search and retrieval system for listing PDB
entries fulfilling user-defined queries based on ligand
information. The LPDB (Roche et al., 2001) stores 195
high-resolution protein–ligand complexes and related
physicochemical descriptors as well as binding constants.
Its main purpose, as well as related protein–ligand data-
sets (Kramer et al., 1999; Nissink et al., 2002) is to pro-
vide reliable 3-D information for calibrating docking
algorithms and scoring functions. The ProLINT database
(Kitajima et al., 2002) contains about 20,000 interaction
data for two protein families (kinases, proteases) with
attached information about the ligand, the protein, exper-
imental binding constants and published literature. It has
been used to derive structure–activity relationships and
predict binding constants. LigBase (Stuart et al., 2002)
is a database of ligand binding sites aligned with related
protein structures and sequences containing 50,000 bind-
ing sites for heterogeneous ligands (ions, solvent, co-fac-
tors, inhibitors, etc.).

However, none of the above-mentioned databases are
directly usable to generate a collection of ‘druggable’ pro-
tein active sites customized to accommodate small molecu-
lar-weight ‘drug-like’ ligands. Generally, no differences
between solvent, detergent, co-factors and ligands (in the
pharmaceutical sense) are made in the above-mentioned
databases. To fill this gap, we recently developed a rela-
tional database (sc-PDB) (Bairoch et al., 2005) specifically
customized for screening purposes (Fig. 1).

Starting from 27,000 PDB entries, a series of hierarchi-
cal filters has been applied to constitute the database as
following:

• removal of undesirable entries: low resolution (>2.5 Å)
X-ray structures, NMR structures;

• on-the fly detection of the molecule to which each refer-
enced PDB atom belongs to (target, organic ligand, pep-
tide ligand, co-factor, ion, solvent, detergent) thanks to
knowledge-based rules and preexisting lists of ‘HET’
codes defined in the PDBsum database (Laskowski
et al., 2005);

• removal of undesirable small molecular-weight ligands
(solvent, detergents, ions and co-factors exhibiting atom
types not recognized by classical docking algorithms);

• definition of putative ligands (organic or peptidic mole-
cules, co-factor if present alone);

• definition of the binding site for each ligand (collection
of amino acids for which any heavy atom is closer than
6.5 Å from any ligand atom);

• prioritization of a single ligand/active site for each PDB
entry by calculating the buried surface area of the ligand
and of the site, and selecting the ligand/site pair for
which the percentage of burial is the highest;
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• storage, for each selected PDB entry, of 3-D atomic
coordinates in readable PDB format (target, active site)
and SD/MOL2 formats (ligand, co-factors, ions).

2.1.2. Annotating the database
The current version of the sc-PDB database contains

5947 ligand-binding sites for 2626 small molecules; In total,
the database refers to 5947 PDB entries. We assigned a
unique UniProt (Bairoch et al., 2005) accession number
to each protein, thereby identifying 1628 different proteins
in the database. Additional information collected from
both UniProt and PDB databanks was collected to obtain
the source organism and the biological function of each
protein. A functional classification of the database entries
is shown in Fig. 2. Entries were separated into two super-
families, namely enzymatic and non-enzymatic proteins.
Out of the 5947 different entries of the database, ca. 85%
are enzymes with a well-referenced EC (Enzyme Commis-
sion) number (Bairoch, 2000). The distribution of enzyme
families displayed in Fig. 2 reveals that the most populated
family is that of hydrolases (35% of the enzymes). This is
correlated to the high number of proteases in the sc-PDB
database. Fig. 2B gives an overview of the redundancy of
current database entries. In most cases, less than 10 copies
of an active site corresponding to a given protein are avail-
able in the database. The uneven protein entries distribu-
tion, which reflects the intrinsic PDB redundancy, is of
Fig. 2. sc-PDB content (release 3, March 2005): (A) distribution of
enzymes and non-enzymes; (B) observed redundancy.
great interest for application like virtual screening. Indeed,
conformational differences between several copies of an
active site reflect the local protein flexibility.

2.2. hGPCRDb: a collection of human non-olfactory

GPCRs

2.2.1. Setting up the database

G Protein-Coupled Receptors (GPCRs) constitute a
superfamily of membrane receptors of outmost importance
in pharmaceutical research (Schwalbe and Wess, 2002).
Hence, GPCRs are the macromolecular targets of ca.
30% of marketed drugs (Wise et al., 2004). The first draft
of the human genome suggests that over 800 genes encode
for a GPCR (Venter et al., 2004) out of which only a few
(ca. 30) are currently addressed by marketed drugs. If
one excludes the family of sensory receptors, about 400
GPCRs are potentially ‘druggable’ with ca. 120 proteins
being still considered as orphan targets (Wise et al.,
2004). Traditionally, the first stage in the design of GPCR
ligands has focused on the potency of the ligands for the
selected receptor target. Selectivity towards the host recep-
tor is usually considered once potency has already been
reached. It would however be highly desirable to consider
selectivity as soon as possible in the design process. Ideally,
one would like to consider the GPCR universe for design-
ing a ligand with the desired selectivity profile. As address-
ing this issue by high-throughput screening is currently
impossible, ‘in silico’ screening could provide a reasonable
start. Indeed the recently described 2.8 Å-resolution X-ray
structure of bovine rhodopsin (Palczewski et al., 2000) pro-
vides a possible 3-D template for modeling other GPCRs.
Recent reports unambiguously demonstrated that rhodop-
sin-based GPCR homology models are accurate enough to
propose reliable 3-D models of receptors very different
from bovine rhodopsin (Petrel et al., 2003; Malherbe
et al., 2003) and to identify new ligands by structure-based
virtual screening (Becker et al., 2004; Evers and Klabunde,
2005; Evers and Klebe, 2004a; Varady et al., 2003). Of
course, using classical homology modeling to establish a
3-D target library including ca. 400 reliable 3-D models is
not possible. We therefore designed a chemoinformatic
tool (GPCRMod) specifically dedicated to high-through-
put GPCR modeling (Bissantz et al., 2004). From the very
beginning, several considerations were taken in the design
of the code: (i) the target library should cover all human
non-olfactory GPCRs, (ii) a reliable multiple alignment
of all investigated GPCRs should be obtained at the
seven-transmembrane (7-TM) domain only, acknowledg-
ing that high-throughput modeling of intra- and extra-cel-
lular loops is not feasible, (iii) the 7-TM binding cavity of
every 3-D model should not be biased by the X-ray struc-
ture of bovine rhodopsin.

In a first step, 372 human GPCR amino acid sequences
were aligned at the 7-TM by browsing the target sequence
for family-specific fingerprints and motifs (Bissantz et al.,
2004) (Fig. 3). Then, alignments were converted into 3-D



Fig. 3. Multiple alignment flowchart in GPCRMod.
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model using a comparative modeling tool that uses a set of
ligand-biased GPCR models as main chain templates, and
two rotamer libraries for side chain positioning (Fig. 4). A
key point of the modeling procedure is that 7-TM cavities
are modeled starting from templates which prove useful to
discriminate known ligands from decoys. Resulting 3-D
models are qualitatively quite similar to those obtained
by ligand-assisted comparative modeling (Evers and Klebe,
2004a,b; Evers and Klabunde, 2005) but obtained at through-
put allowing the fast generation of hundreds of targets.

2.2.2. Annotation of the hGPCRdb

Assuming that similar targets recognize similar ligands,
an accurate annotation of all entries should consider simi-
larities/differences at their binding cavity. As most small
molecular-weight ligands probably bind to the 7-TM core,
all GPCR entries have been annotated using a chemoge-
nomic procedure considering a fingerprint characterizing
their 7-TM binding cavity. Thirty positions lining the reti-
Fig. 4. 3-D model generation
nal binding site in bovine rhodopsin, were extracted from
all entries and concatenated into ungapped sequences out
of which a phylogenetic tree could be derived using the
standard UPGMA clustering method (Surgand et al.,
2006) (Fig. 5).

Twenty two clusters could be unambiguously detected
from the present analysis of 30 amino acid positions
(Fig. 5). These clusters were defined in order to encompass
the maximum number of related entries within a branch
characterized by the highest possible statistical bootstrap
value. Thirty four out of 372 entries could not be assigned
to one of the existing 22 clusters and are defined as single-
tons. The herein presented tree is very similar to the most
complete phylogenetic tree (GRAFS classification) known
to date (Fredriksson et al., 2003) although the latter has
been obtained from full TM sequences. In both classifica-
tions, GPCRs of the Frizzled, Glutamate, Secretin and
Adhesion families cluster in well-separated groups whereas
the large Rhodopsin family can be classified into 18
flowchart in GPCRMod.



Fig. 5. Two-step protocol to generate a TM cavity-driven phylogenetic tree: (1) selection of 30 critical positions, (2) definition of ungapped sequences
describing the 7-TM cavity, (3) TM cavity-derived phylogenetic tree for 372 human GPCRs. The consensus tree was derived from 1000 replicas using
amino acid identity within a set of 30 discontinuous positions to measure protein distances. Numbers in commas indicate the number of entries in each
cluster. Numbers in italic represent bootstrap values to assess the statistical significance of the tree. Receptors classified as singletons (see text) are not
displayed here for sake of clarity. Glutamate, Rhodospin, Adhesion, Frizzled and Secretin subfamilies are colored in green, cyan, yellow, pink and orange,
respectively.
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Fig. 6. Target library screening flowchart.
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different clusters. Remarkably, all known GPCR subfami-
lies (e.g. receptors for biogenic amines, purines, and che-
mokines) are reproduced with high bootstrap support.
The five main families (Glutamate, Rhodopsin, Adhesion,
Frizzled, Secretin) reported in the GRAFS classification
are recovered with no overlaps between the corresponding
clusters with the single exception of Q9GZN0 (GPR88), a
rhodopsin-like GPCR clustered with class III GPCRs.
Interestingly, receptors for which the orthosteric binding
site is not located in the TM domain (Adhesion, Secretin
and Glutamate families) are nevertheless grouped into
homogeneous clusters. Relating cluster members to precise
molecular features is here greatly facilitated by the analysis
of a small subset of amino acids. For each of the 22 clus-
ters, there is often a clear relationship between known
ligand chemotypes (e.g. amines, carboxylic acids, phos-
phates, peptides, eicosanoids, and lipids) and the cognate
TM cavities. For example, receptors for bulky ligands
(e.g. phospholipids, prostanoids) have a TM cavity signifi-
cantly larger than that for smaller compounds (e.g. bio-
genic amines, nucleotides). Receptors for charged ligands
(cationic amines, phosphates, mono and di-carboxylic
acids) always present among the 30 critical residues one
or more conserved amino acid exhibiting the opposite
charge (e.g. Asp3.32 for biogenic amines; Asp4.60/Glu7.39

for chemokines; Arg3.29/Lys6.55/Arg7.35 for nucleotides).
Our clustering approach implies two assumptions: (i) the

overall fold of the 7-TM domain around the binding cavity
has been conserved along evolution; (ii) critical hotspots
spread over the 7-TM domain repeatedly account for
ligand binding. Although solid biostructural data for the
three most important GPCR classes (class I, class II, class
III) are missing, numerous experimental do provide evi-
dence for data in favor of strong similarities among many
GPCRs: (i) residues known to affect small molecular-
weight ligand binding to unrelated GPCRs are mostly
spread among the herein selected 30 residues suggesting a
common architecture of the TM pocket, (ii) many known
ligands are promiscuous for even unrelated GPCRs and
are usually anchored through so-called privileged struc-
tures to common subpockets of different GPCRs (Bon-
densgaard et al., 2004). Of course, we are aware that
class II and class III GPCRs exhibit an additional
orthosteric site located outside the 7-TM bundle. There-
fore, conclusions drawn herein only apply to the 7-TM
binding site.

3. Screening target libraries

Provided that a target library has been set up, two
screening methods are possible (Fig. 6). In a 1-D screening,
a query enclosing amino acid sequence information (e.g.
fingerprint) is used to parse family-specific alignments in
order to retrieve interesting targets. In a 3-D screening,
the 3-D structure of either a ligand or a known active site
is used to browse 3-D structures or homology models. Both
applications will be detailed in the following section.
3.1. 1-D screening

Simple 1-D screening is less precise than 3-D screening
but also less sensitive to errors. When applied entire target
families (e.g. GPCRs, kinases), its accuracy only depends
on the quality of the sequence alignment which is generally
much higher that of 3-D structural models. Assuming that
similar ligands should bind to similar cavities, browsing a
database of sequence alignments can easily provide access
to reliable information if specific fingerprints are already
known. Three possible applications of 1-D screening of a
GPCR target library are presented here.

3.1.1. Searching for orthologs/paralogs
The amino acid sequence of GPCRs is extremely vari-

able in length (from 290 to 6300 residues for human
GPCRs) notably at extra- and intra-cellular loops. Relying
receptor comparisons on full sequence alignment may thus
be quite misleading. Comparing the above-defined TM
cavity-lining residues is much more appropriate. For any
GPCR target of interest, these 30 residues can be identified
quite unambiguously at least for rhodopsin-like GPCRs as
several class specific TM fingerprints previously identified
in this family of receptors can guide the sequence alignment
(Bissantz et al., 2004).

As an example, we have been looking for the human ortho-
log(s) of a gene product from C. elegans (Y22D7AR_13) in
order to predict the functional role of this presumed GPCR.
Blasting its full amino acid sequence against human GPCRs
leads to ambiguous conclusions because the level of
sequence identity with the closest human GPCRs is low (usu-
ally in the 15–30% range) and that several candidates are
possible (Table 1). Looking at local sequence identity within
a set of 30 TM cavity-lining residues provides an answer that
is easier to interpret because the sequence identities with the
input query are much higher (above 70% for the first three 5-
TH receptors, Table 1). Since 7 out of the top 10 ranked can-
didates were 5-HT receptors, the C. elegans gene product
was predicted to be a receptor for serotonin, which was
further experimentally validated (Segalat, personal commu-
nication). The proposed approach has the merit to be extre-
mely fast (a few ms) but requires the a priori identification of
the 7-TMs and a good sequence alignment of the latter
domain. Therefore, the presence of TM fingerprints (usually



Table 1
Searching for the 10 closest human orthologs of the C. elegans Y22D7AR_13 gene product

Full sequence blasta TM-cavity searchb

Rank Receptor Sequence identity, % Rank Receptor Sequence identity, %

1 5-HT1B 29.6 1 5-HT1A 72.7
2 5-HT1D 29.0 2 5-HT7 72.7
3 5-HT1A 26.7 3 5-H5A 72.7
4 D2 25.4 4 a1A 69.7
5 5-HT1E 24.8 5 5-HT1B 69.7
6 a2A 24.0 6 5-HT1D 69.7
7 a2C 23.8 7 5-HT4 66.7
8 D3 23.6 8 a1B 63.6
9 a2B 21.1 9 a1D 60.6
10 M2 16.8 10 5-HT1E 60.6

a Sequence comparison achieved using standard settings of the BLASTP program (http://services.bioasp.nl/blast/cgi-bin/blast.cgi).
b Sequence comparison achieved using our in-house GPCRfind program (http://bioinfo-pharma.u-strasbg.fr/gpcrdb/jss.html).
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present in nearly all entries) (Bissantz et al., 2004; Surgand
et al., 2006) in the input query is a prerequisite.

3.1.2. Computer-guided target deorphanization

A TM-cavity biased phylogenetic tree offers the oppor-
tunity to navigate in target space without the necessity to
rely on questionable 3-D structures. Receptors close in tar-
get space can be expected to bind ligands close in chemical
space. Known GPCR ligands are thus a good starting point
to start deorphanizing receptors predicted to be close
enough to liganded receptors (Table 2).

For example, focusing our cavity-based tree on two
related orphan receptors (GPR19, GPR83) predicts a sig-
nificant relationship to three tachykinin receptors
(NK1R, NK2R, NK3R; Fig. 7). Likewise, GPR54 is pre-
dicted to be close to three galanine receptor subtypes
(GALR, GALS, and GALT). Therefore, a rational start
to find ligands for these three orphans would be first to test
known ligands for neurokinine and galanine receptors,
respectively. An experimental validation of this approach
has been recently reported by scientists at 7TM-Pharma
Table 2
Possible ligand source for some orphan GPCRs

Orphan receptor(s)a Clusterb

Q9GZN0, Q9NFN8 Glutamate
Q8NHZ9, Q8TDU1 Glutamate
LRG4, LRG5, LRG6 Glycoproteins
Q8TDV5 Lipids
GP19, GP83 Peptides
Q969F8 Peptides
GPRA, PKR1, PKR2 Vasopeptides
O14804, GP57, GP58 Amines
GP39 Brain-gut peptides
O75307, RDC1 Chemokines
GPR7, GPR8 Opiates
GP15, GP25, GP44, GPR1 Chemoattractants
EBI2, GP92, P2Y5 Purines
G171, GP87 Purines
GP17, GP34, FK79, P2YA Purines

a Receptors are labeled according to their UniProt (Bairoch et al., 2005) ent
b For cluster definition, see Surgand et al. (2006).
who identified ligands for the CRTh2 (GPR44) recep-
tor by evaluating angiotensin 2 receptor (AG2R, AG2S)
ligands, the corresponding targets being close when consid-
ering the 7-TM cavity (Frimurer et al., 2005).

3.1.3. Matching target space with ligand space

GPCR ligands sharing a common privileged structure
and exhibiting promiscuous binding to unrelated GPCRs
are a current important source for GPCR library design.
Assuming that conserved moieties of the ligands are likely
to bind to conserved subsites of the targets (Bondensgaard
et al., 2004), matching privileged structures with TM hot-
spots can be achieved very easily without biasing the match
by a manual or automated 3-D docking.

As an example, biphenyltetrazoles and biphenylcarb-
oxylic acids (Fig. 8) are known to bind to at least six
GPCRs (AG22, AG2R, AG2S, GHSR, L4R1, L4R2)
(Smith et al., 1993; Reiter et al., 1998; Ji et al., 1994). Fine
details of 3-D recognition of this privileged substructure by
GPCR hotspots have been recently proposed by a thor-
ough mutagenesis-guided manual docking of several
Source

GABA-B allosteric ligands
CaSR allosteric ligands
LH/FSH nonpeptide ligands
Cannabinoid receptors ligands
Tachykinin receptors ligands
Galanine receptor ligands
Oxytocin/vasopressin receptor ligands
Biogenic amine receptors ligands
Neuromedin U receptors ligands
Chemokine receptor ligands
Somatostatine receptor ligands
Angiotensin II receptor ligands
LPC/SPC receptor ligands
Purinergic nucleotide receptor ligands
Cysteinyl Leukotriene receptor ligands

ry name.

http://services.bioasp.nl/blast/cgi-bin/blast.cgi
http://bioinfo-pharma.u-strasbg.fr/gpcrdb/jss.html


Fig. 7. Close up to the peptide receptors cluster.

Fig. 8. Matching privileged structures of known GPCR ligands to TM hotspots. An in-house GPCR ligands database is searched to retrieve privileged
structures common to multiple GPCRs and to find conserved residues within the 7-TM cavity of selected entries. Browsing the in-house GPCR cavity
database (sequence of 30 critical positions lining the 7-TM cavity of 372 human GPCRs) allow to retrieve new GPCR entries satisfying the query and likely
to accommodate the privileged structure.
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GPCR ligands (Bondensgaard et al., 2004). We propose
here a much simpler approach leading to the same out-
come; looking at the 30 residues lining the TM cavity of
the later six GPCRs allows us to clearly identify putative
TM residues able to interact with this substructure (Fig. 8).

Conserved aromatic residues are likely to interact with
the biaryl moiety cluster between TMs 6 and 7 (Phe6.44,
Trp6.48, Phe/Tyr/His6.51, Phe/Tyr7.43). A positively charged
residue that probably interacts with the bioisosteric tetra-
zole and carboxylate groups should be located nearby the
aromatic cluster. Hence, three basic residues (Lys5.42,
Arg6.55, and Arg7.35) fulfill this requirement. Last a polar
side chain at position 6.52 (His/Gln) is conserved for the
six investigated GPCRs and might H-bond to the acidic
moiety of the privileged structure. We have then clearly
identified the same important anchoring residues than Bon-
densgaard et al. (2004) by simply looking at sequence align-
ments of TM cavity-lining amino acids, without relying on
any 3-D docking data. Searching our TM cavity database
for additional GPCRs fulfilling the above-described
requirements (Phe6.44, Trp6.48, Phe/Tyr/His6.51, Phe/
Tyr7.43 and Lys5.42 or Arg6.55 or Arg7.35 and His/Gln6.52)
permits us to extract 17 new GPCRs that might accommo-
date biphenyl-tetrazoles and biphenyl-carboxylic acids
(Fig. 8). Among putative targets are 10 chemoattractant
receptors (APJ, C3AR, C5AR, C5L2, CML1, FML1,
FMLR, GP15, GP44, and GPR1), three brain-gut peptide
receptors (MTLR, NTR1, and Q9GZQ4), two cationic
phospholipid receptors (G2A, SPR1) and two peptide
receptors (GALR, GALS). This target list encompasses
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Fig. 9. Inverse screening of the sc-PDB database for finding the target of
four small molecular weight ligands: top panel, biotin; bottom panel: 4-
hydroxy tamoxifen. Filled stars indicate the different sc-PDB copies of the
true target (top: streptavidin, bottom: estrogen receptor a). Filled triangles
and squares indicate known secondary targets of 4-hydroxy tamoxifen
(3a-hydroxysteroid dehydrogenase and NADP[H] quinone oxidoreduc-
tase, respectively). Targets are ranked by decreasing GOLD fitness scores
averaged over 10 independent docking runs.
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receptors recently identified by Bondensgaard et al. (2004)
(e.g. APJ, NTR1). It also suggests totally new putative tar-
gets for the investigated privileged structure that might
serve as a common scaffold for small-sized combinatorial
libraries targeting the new receptors list.

3.2. 3-D screening

High-throughput docking of large chemical libraries
(Halperin et al., 2002) has established as a promising tool
for identifying new hits from protein 3-D structures coming
mostly from X-ray diffraction data (Kitchen et al., 2004)
but also from homology modeling (Evers and Klebe,
2004b). Finding out of a large library which ligands are
likely to bind to a protein of interest is slowly turning to
routine computational chemistry (Schoichet, 2004). Sur-
prisingly, the opposite question is still an issue. Given a
known ligand, is it possible to recover its most likely tar-
get(s)? Answering this question using the above-mentioned
docking approach implies first the development of a collec-
tion of protein active sites (see Section 2), and then use of
an inverse docking tool able to dock a single ligand to mul-
tiple macromolecules. Although inverse screening uses the
same paradigm as ligand screening (predicting the most
likely ligand-target interactions from molecular docking),
docking a single ligand to a target library is more difficult
to setup than classical docking of a ligand library to a sin-
gle target. One should automate the generation of input
files (3-D coordinates of the target or/and of the cognate
binding site; docking configuration file) for a large array
of heterogeneous targets, which is much more difficult than
setting up a reliable set of coordinates for a ligand library.
Notably, protein and binding site 3-D coordinates should
be prepared automatically and should be rendered suitable
for docking by removal of any additional molecule (sol-
vent, ion, and co-factor) not essential for ligand binding.
We have chosen the GOLD docking software (Verdonk
et al., 2003) for two main reasons: (i) it is one of the most
robust and accurate docking tool in our hands (Kellenber-
ger et al., 2004); (ii) it only requires a single configuration
file whose distribution over a target library is easy to
process.

3.2.1. 3-D screening of the PDB: proof of concept

The first validation of inverse screening was to recover
among 2 150 entries of the sc-PDB (release 1, February
2004) the true target(s) of either selective (e.g. biotin, 6-
hydroxyl-1,6-dihydropurine ribonucleoside) or promiscu-
ous ligands (e.g. 4-hydroxytamoxifen, methotrexate).
Screening the sc-PDB database clearly allowed to unam-
biguously recover the true targets of the four investigated
ligands (Paul et al., 2004). When screening our database
for potential targets of biotin, 7 out of the 10 streptavidin
entries present in the sc-PDB were ranked at the top eight
positions with very good averaged fitness scores (Fig. 9).
Interestingly, the three streptavidin copies with lower rank-
ings (90th, 195th, 315th) correspond to either an active site
for which a key amino acid (Asp128) has been mutated
(1swt) or alternative binding sites (peptide binding sites
for 1vwr and 1rsu). Altogether, the proposed inverse
screening protocol is able to unambiguously rank streptavi-
din as the most likely target for biotin with a percentage of
coverage of 70% (7 out of 10) among the top 10 (0.5%)
positions.

Likewise, the two sc-PDB entries of the estrogen recep-
tor a were ranked at the top two positions when screening
for the target of 4-hydroxy tamoxifen (Fig. 9) Interestingly,
two other targets ((NADP[H] quinone oxidoreductase, 3a-
hydroxysteroid dehydrogenase) at least ranked twice
among the top 25 scorers, are known minor targets of this
ligand. Therefore, inverse screening of target databases
could also be viewed as a computational filter to roughly
predict the selectivity profile of a given ligand and thus



Fig. 10. Percentage of recovery of known targets as a function of the top scoring fraction found by inverse screening (green line) and random picking (red
line). The percentage of coverage of known targets is the ratio in percentage between the number of true target entries recovered by inverse screening at a
defined top scoring fraction and the total number of true target entries in the sc-PDB dataset.

Table 3
Predicted targets for five compounds from a triazepanedione library

Target E.C. numbera Nb Target rate (%)c

Cpd1 Cpd2 Cpd3 Cpd4 Cpd5

Aconitase 4.2.1.3 7 43 29 14
DAAOd 1.4.3.3 2 50 50
ESTe 2.8.2.4 2 50 100 50
GTf 2.4.1– 2 100 50
HPRTg 2.4.2.8 6 33 17
MAh 3.4.11.18 5 20 100
PLA2i 3.1.1.4 8 13 25
PNPj 2.4.2.1 6 17 83
TKk 2.7.1.21 5 80 20
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putative side effects. When compared to random screening,
a significant enrichment in the true target is observed
among the top scorers (Fig. 10). Analyzing both the enrich-
ment factor and the percentage of coverage of known tar-
gets indicates that the best compromise can be reached by
selecting a very small fraction (0.5%) of the sc-PDB data-
base. Even for the rather difficult case of methotrexate,
selecting the top 2.6% scorers would allow to select 40%
of all dihydrofolate reductase entries with a 15-fold enrich-
ment with respect to random screening.

3.2.2. 3-D screening of the PDB: test case

Having validated the inverse screening approach for
four unrelated ligands, a prospective screening was applied
to the identification of putative targets for representative
compounds of a scaffold-focused combinatorial library
(Fig. 11). Release 1 of the sc-PDB (2148 entries) was
screened to prioritize targets likely to accommodate five
NN

N

O
R5

R2

O

R4

R3

R1

Fig. 11. The 1,3,5-triazepane-2,6-dione scaffold with five diversity points.
representative compounds from the library (Table 3). In
the sc-PDB, a target is defined either as an enzyme from
the PDB with a unique EC number, or a non-enzymatic
protein with a unique name according to our previous
a Enzyme commission number.
b Number of copies in the sc-PDB (release 1, February 2004).
c Target rate: Percentage of targets ranked in the top 2% scoring entries.
d

D-amino-acid oxidase.
e Estrogen sulfotransferase.
f Lipopolysaccharide 3-alpha-galactosyltransferase.
g Hypoxanthine-guanine phosphoribosyltransferase.
h Methionine aminopeptidase.
i Phospholipase A2.
j Purine nucleoside phosphorylase.

k Thymidine kinase.
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annotation of the database. Differences related to species,
isoforms or mutations are thus not considered in our clas-
sification scheme. For each of the five investigated com-
pounds, a target was selected if it fulfills any of the three
following criteria: (i) 50% of target entries present in the
sc-PDB were scored, according to the average GOLD fit-
ness score, among the top 2% scoring entries, (ii) the aver-
age fitness score for all entries of the corresponding target
was above 50; two entries of the same target were scored in
the top 2% scoring entries.

Out of the nine targets fulfilling this selection procedure,
five were finally selected for biological evaluation (ES, MA,
PLA2, PNP, TK; Table 3). About 24 compounds enclosing
the five representative used for inverse screening were
tested for inhibition of the above-described five enzymes.
Micromolar inhibitors from this small library could be
found for three out of the five predicted entries (MA,
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Fig. 12. Ranking of the true receptor(s) of a selective ligand (A: MRS-
2179, P2Y1 receptor antagonist) and of a promiscuous ligand (B: NAN-90,
antagonist of the dopamine D2 and D3 receptors, serotonin 5-HT1A, 5-
HT1D, 5-HT1F, 5-HT2A, 5-HT2C, 5-HT7 receptors, and adrenergic a1a

receptor). Known receptor(s) are indicated by filled stars. Targets are
ranked by decreasing GOLD fitness scores averaged over 10 independent
docking runs.
PNP, PLA2). A detailed description of corresponding
structures and inhibitory constants will be reported
elsewhere.

3.2.3. 3-D screening of the hGPCR library:

proof-of-concept
Screening the collection of human GPCRs for identify-

ing the receptors of known ligands is a quite demanding
task regarding the current limited accuracy of GPCR mod-
els. We however tried to recover, from the GPCR target
database, either the known receptor of a selective puriner-
gic P2Y1 antagonist (MRS-2179) or the known receptors of
a promiscuous antagonist (NAN-190; Fig. 12) previously
shown to bind to several monoamine receptors with nano-
molar affinities (a1A, D2, D3, 5-HT1A, 5-HT1D, 5-HT1F, 5-
HT2A, 5-HT2C, 5-HT7). When screening the protein library
for putative receptors of MRS-2179, the P2Y1 receptor is
indeed ranked among the top scorers (7th, Fig. 12A). Five
out of the nine known targets of NAN-190, the second
ligand investigated herein, are ranked in the top 25 posi-
tions, and seven out of nine in the top 31 positions
(Fig. 12B). The worst-ranked true receptor (5-HT1A) is
ranked 68th. For both ligands, ca. 80% of GPCRs closely
related to the true target(s) (P2Y receptors for MRS-
2179; 5-HT receptors for NAN-190) usually clustered in
the top 20% scorers. Thus, the current inverse screening
procedure is more aimed at identifying the likely receptor
subfamily (dopamine, serotonin, adenosine, etc.) than pre-
cisely mapping the individual preference for highly related
GPCR subtypes. It could thus be used as a computational
filter to study the most likely targets when addressing the
selectivity profile of a given compound or trying to identify
the yet unknown receptor of a molecule showing promising
in vivo biological effects. Although the hGPCR database
enclosed ground-state models suitable for docking antago-
nists and inverse agonists (Bissantz et al., 2003) we checked
whether the same protocol could be applied to identify the
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Fig. 13. Ranking of the true receptor (GPR91, filled star) of an endog-
enous ligand (succinic acid) by an inverse screening of a GPCR 3-D
library. Targets are ranked by decreasing GOLD fitness scores averaged
over 10 independent docking runs.
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receptor of endogenous ligands. The hGPCR database was
therefore screened to recover the receptor of succinic acid
(Fig. 13), a recently identified ligand for the previously
orphan GPR91 receptor (He et al., 2004). Although
ground-state 3-D models were screened, the native receptor
was surprisingly ranked among the top-scoring receptors
(11th) in our inverse screening. Again, the true receptor
was not ranked first but high enough in a shortlist that
could be experimentally evaluated.

4. Conclusions

Virtual screening of target libraries offers new opportu-
nities to prioritize a few targets for experimental evaluation
by applying simple ligand-based or target-based queries.
There is no reason that single ligand docking to a wide
array of targets might not be as useful as classical docking
of ligand libraries to a single protein, assuming comparable
accuracies of input data. The increasing coverage of target
space by the Protein Data Bank as well as the development
of accurate comparative models describing entire protein
families is likely to favor target screening in a near future.
Pharmacophore-based and protein-based computational
filters are nowadays used sequentially in virtual screening
(Evers and Klabunde, 2005; Evers and Klebe, 2004b).
One could imagine very similar scenarios for target screen-
ing, where interesting cavities would be first filtered by sim-
ilarity measurements to a binding site of interest (Jambon
et al., 2003; Weber et al., 2004), and then selected by ligand
docking. Furthermore, orthogonal clustering of target fam-
ilies and of their ligands should soon provide precise che-
mogenomic information for selecting the most interesting
compounds/scaffolds according to a predefined selectivity
profile. Addressing simultaneously potency and selectivity
in hit evaluation will undoubtedly affords added-value mol-
ecules in early drug discovery processes.
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