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Medicinal chemists have traditionally realized assessments of chemical diversity and subsequent compound
acquisition, although a recent study suggests that experts are usually inconsistent in reviewing large data
sets. To analyze the scaffold diversity of commercially available screening collections, we have developed
a general workflow aimed at (1) identifying druglike compounds, (2) clustering them by maximum common
substructures (scaffolds), (3) measuring the scaffold diversity encoded by each screening collection
independently of its size, and finally (4) merging all common substructures in a nonredundant scaffold
library that can easily be browsed by structural and topological queries. Starting from 2.4 million compounds
out of 12 commercial sources, four categories of libraries could be identified: large- and medium-sized
combinatorial libraries (low scaffold diversity), diverse libraries (medium diversity, medium size), and highly
diverse libraries (high diversity, low size). The chemical space covered by the scaffold library can be searched
to prioritize scaffold-focused libraries.

INTRODUCTION

With the advent of initiatives such as the CNRS “National
Chemical Library”1 or the NIH Molecular Libraries Initia-
tive,2 public research rejoined the pharmaceutical industry
in its effort to organize and to curate small molecular-weight
molecules for the purpose of drug discovery and target
deorphanization. The drastic and steady increase of com-
mercially available compounds beginning in the early 1990s3

provided chemical information scientists the opportunity to
enhance the diversity of their proprietary compound collec-
tions. The main challenge that remained over the years, which
is regularly revisited,4 is the way of measuring the diversity
of a compound library. Very informative testimonials about
this key aim were shared with the community elsewhere.5

Nevertheless, molecular diversity is heavily dependent on
the descriptors, metrics, and multivariate methods used to
assess it. Most studies on commercially available compound
libraries6-8 have traditionally used physicochemical and
topological descriptors, summed up into a score9 or encoded
into fingerprints10 or hash codes,11-13 to evaluate the unique-
ness and diversity of such libraries. Although fingerprints
can be quickly computed for large collections of compounds,
it results in classifications of molecular libraries that are not
very intuitive for medicinal chemists because a single class
of compounds may contain quite different molecular scaf-
folds accessible by very different synthetic routes. Tradition-
ally, medicinal chemists mining high-throughput screening
(HTS) data have organized hits into homogeneous chemical
series. Why not use the same partitioning method before the
virtual or real screening process? Archiving compounds by
scaffolds is much more natural but computationally more

demanding if calculated ad hoc. However, various definitions
of a scaffold are possible. For a given compound (e.g.,
dopamine D3 receptor antagonist BP-890; Figure 1), a
scaffold may be considered, among many possibilities, as a
maximum common substructure (MCS),14 the largest rigid
fragment or rings,15 molecular frameworks or Murcko’s
scaffolds16 with or without descriptors (e.g., topological
torsions),17 and molecular fragments as generated by the
RECAP method.18 According to the chosen definition, the
scaffold may be unique (superstructure) or multiple (two to
three substructures for BP-890). Therefore, depending on the
way a scaffold is regarded, very different substructures (eight
in the present case) could be stored as representative of the
cognate compound.

During a medicinal chemistry project, it is not uncommon
that structural parts of the scaffold are redefined by either
extension or reduction. If the limit of one extreme is reached
by setting the full compound equal to the scaffold, how far
can one reduce the compound structure to obtain a chemically
meaningful scaffold? In the present study, we classified 17
commercially available screening collections according to
graph-based maximum common substructures19 and joined
the resulting classification into a single library of nonredun-
dant classes. A new metric (PC50C) is proposed to assess
the diversity of a screening collection, by computing the
percentage of classes accounting for 50% of the classified
compounds. Since this metric is independent of the size of
a library, it can be used to compare collections of different
sizes.

METHODS

The overall workflow for reading, processing, and extract-
ing molecular scaffolds out of commercial libraries is
illustrated in Figure 2 and further detailed in the following
paragraphs.
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Database Processing.The screening collections used in
this study date from the last quarter of 2003 except the
MDDR, for which the first 2004 release has been used. A
total of 17 libraries from 12 suppliers plus the MDDR
describe the commercially available chemical space ad-
dressed by the present paper. It covers 2 410 857 compounds
easily available as powders in vials. The collections need
also to have a computer-readable counterpart, delivered as
an SDFile on a CD-ROM or downloadable from the
supplier’s webpage.9 The very first processing steps consisted
of standardizing the structure and data headers of SD files
using an in-house Perl script. Property- or functional group-
based filtering rules20 implemented in OpenEye’s Filter21

program were then used to select the most suitable com-

pounds for each library (see filtering rules in the Supporting
Information). In this step, counterions were removed and the
ionization state of each compound at physiological pH was
assigned. For each collection, an additional step consisted
of eliminating remaining redundant compounds, taking
stereochemical information into account using the CLIFF
program22 (please note that CLIFF has recently been split
into several separated routines).

Compound Classification.One of the major challenges
was to obtain an organization of the screening collections
into chemically meaningful classes. ClassPharmer Suite’s
proprietary clustering methodology19 was adopted. To make
a clear distinction with the common association of clustering
with fingerprints in chemoinformatics, the grammatical root
“class” (classes/classification) is preferred over “cluster”
(clusters/clustering). But, in strictly algorithmic terms, the
method used herein happens to be a clustering algorithm and
not a classification where one starts from predefined scaf-
folds.23

Two parameters mainly influence the outcome of the
classification: the homogeneity and the redundancy level.
Homogeneity is related to the size (heavy atom count) of
the scaffold divided by the size (heavy atom count) of the
largest compound in the class. Redundancy describes to what
extent a compound is allowed to appear in multiple classes.
Hence, the classes are represented by a scaffold assimilated
to the MCS. The underlying algorithm is covered by trade
secret but can, however, be approximately described as
follows: given a data set ofN compounds, (i) find topologi-
cally aware (approximated) MCSs for all pairs, triplets,
quadruplets, ..., andN - 1 groups of compounds passing
the user-defined homogeneity level; (ii) select the smallest
number of MCSs that fulfills the user-defined redundancy
level while giving the minimal number of singletons, and if

Figure 1. Possible representations of molecular scaffolds for the dopamine D3 antagonist BP-890.

Figure 2. General workflow for processing screening libraries.
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the option is selected, (iii) generate subclasses with larger
(exact) MCSs where subsets of a class with higher homo-
geneity can be found. The implementation of the algorithm
is preceded by a normalization process of the input structures.
For the present classification, the homogeneity and redun-
dancy were set to medium and low, respectively. Exact ring
closure and exact atom match parameters were chosen to
define classes. No subclasses were computed. Hereafter, the
term scaffold will, thus, be restricted to Bioreason’s MCS.

Scaffold Distribution. The nonhierarchical disjunctive
algorithm which was used allows that a compound belongs
to more than one class. To compare the scaffold distribution
of different libraries, the interclass redundancy of a com-
pound was removed using a Python script based on the
OpenEye OEChem1.3 library.24 This task was achieved by
computing the central scaffold score (CSS) of each compound/
class pair and assigning the compound to the class presenting
the lowest CSS, calculated by the following equation:

where MWcompoundis the molecular weight of a compound,
MWscaffold the molecular weight of the scaffold, andNR the
number of substitution points (R groups).

For every screening collection, the classes were ordered
by decreasing size and two metrics (NC50C and PC50C)
computed. NC50C describes the number of nonredundant
classes covering 50% of classified compounds. PC50C
features the percentage of classes covering 50% of classified
compounds. Two classifications were analyzed. In the first
one, all classes of at least two unique compounds were
investigated. In the second one, a threshold of 25 was
assigned to the minimal size of a class (number of unique
compounds). Classes populated by less than 25 unique
compounds will be referred to as “rare scaffolds” (Figure
2).

R-Group Decomposition.The topology around the scaf-
fold and generation of the corresponding SMILES strings25

were obtained by R-group decomposition (see general
procedure in Figure 3). A compound subset and its corre-
sponding ClassPharmer scaffold were the input for finding
the minimum common supergraph26 under the form of a
Markush structure. For each compound/scaffold pair, the
substitution points were determined and a scaffold with R
groups was generated. Among this R-group-labeled scaffold,
isomorphs were eliminated and the pairwise substructure
relationship was checked. This reduced considerably the
number of structures to compare. The remainingN Markush
structures were then used to find the minimum common
super-Markush structure. The process is similar to the one
described by Brown et al., which identifies the hyperstruc-
ture,27 and is outlined as follows:

As for the removal of interclass redundancy, the R-group

decomposition was implemented in Python on the basis of
OpenEye OEChem.24

Setting Up a Scaffold Library. All classes (excluding
the singletons) were assembled from the generated clas-
sifications to form a scaffold library. Computing InChI28

representations (“Mobile H Perception” option ON) for all
scaffolds gave the possibility to identify tautomeric forms
and group them together. All structural data were deposited
in a relational database (MySQL 4.1; for database structure,
see the Supporting Information, Scheme A). Each scaffold
was annotated with molecular properties (AlogP, polar
surface area, hydrogen bond donor and acceptor count,
rotatable bonds, and ring systems count) and the Markush
structure SMILES. The main scaffold structure table can be
browsed and queried by similarity, substructure, or super-
structure using JChemBase29 and is freely accessible at
http://bioinfo-pharma.u-strasbg.fr/scaffolds.

RESULTS AND DISCUSSION

ClassPharmer MCS and Classification.To illustrate the
MCS and classification concepts in ClassPharmer, a very
simple data set of 20 known dopamine D2 antagonists (Figure
4) randomly chosen from the Hert data set30 was taken as a
reference. When medium homogeneity and redundancy
settings were used, seven classes and four singletons were
generated. Interestingly, computed MCSs feature either
classical MCS (e.g., class 1), ring scaffolds (e.g., class 2),

Figure 3. R-group decomposition procedure from Classpharmer
classifications. For each class X, all compounds (X1, X2 to Xn) are
extracted and a Markush structure is extracted from the first
compound (M1) and then iteratively refined to a minimum
superstructure (M2) by adding the next molecule until the last
compound in the class has been processed to give the final
superstructure (Mn).

CSS)
MWcompound- MWscaffold

NR
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or even Murcko’s scaffolds (e.g., classes 3 and 5; Table 1).
ClassPharmer MCSs span at least half of the largest
compound’s size (heavy atom count) in the class (Table 1)
according to the user-defined homogeneity level. Therefore,
generating larger or smaller MCSs is easily customizable
by adjusting the homogeneity setting. Here, singletons are
compounds which either bear a MCS not present in any other
compound (e.g., compounds 13 and 15; Figure 4) or present
a known MCS but fail to pass the homogeneity criterion (e.g.,
high-molecular-weight compound, no case in Table 1) or for
which a common MCS could be found (e.g., phenyl-
piperazine) but with a different chemical environment (the
benzofuranyl-piperazine 2 is not classified with the phenyl-
piperazines 3, 7, 11, and 19 in class 1; Figure 4 and Table
1). ClassPharmer MCSs are, therefore, more complex than

simple maximum common substructures. Not only the MCS
but its chemical environment should be conserved to group
compounds in the same class. Fuzzier definitions are of
course possible (e.g., disabling exact atom matches and ring
closures), but resulting classifications would be more difficult
to interpret and, therefore, have not been investigated in the
present paper.

A second parameter that influences the classification is
the level of accepted redundancy (how many times a
compound may appear in multiple classes). Using a medium
redundancy, several compounds are found in at least two
classes (Table 1). For the general purpose of HTS data
analysis, this is not really a problem and many medicinal
chemists would indeed reproduce the herein-reported clas-
sification. However, to compare the scaffold diversity of

Figure 4. Structure of 20 true dopamine D-2 antagonists randomly extracted from the Hert data set.30
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heterogeneous screening collections with our new metrics
(NC50C and PC50C) and facilitate the subsequent analysis,
we preferred to simply remove redundancy by adjusting the
redundancy parameter to low (the most recent release of
ClassPharmer even allows to set this parameter to none) and
postprocess the obtained classification as reported above. We

do not claim that this kind of classification is the best one,
but it allows a robust and chemically intuitive grouping of
most drug-like compounds that we have seen up to now.

Processing the Libraries.In a first step, 17 commercially
available screening collections were processed to retain
unique druglike molecules. In addition, a prototypical col-
lection of druglike compounds (MDDR) was taken as
reference to delimit true druglike chemistry space. In
agreement with previous reports,6,20 the percentage of drug-
like molecules in these collections varies from ca. 30%
(ChemStar) to 60% (Asinex Platinum) (see Table 2). No
relationships could be established between size and drug-
likeness of the libraries. It should be noted that a set of very
strict rules (see the Supporting Information, Chart A)
especially regarding molecular weight (250< MW < 500)
and Lipinski’s rule of five violations (none) was used herein.
Considering the MDDR as a reference druglike data set, we
can thus consider most of the screening collections inves-
tigated here to be druglike, reflecting the effort of vendors
to produce higher quality collections.3 Internal duplicates
(compounds present several times within the same collection)
ranged from none (ASIp) to 320 compounds (TRI). An
exceptionally high number (146 425) was found for CBG
but could be explained by the previous merge of two
screening collections (EXPRESS-Pick and Hit2Lead) into a
single data set. Retrospectively, only two compounds would
have been duplicated in CBG Express-Pick. For the MDDR,
there were still 2294 duplicates left, most of them arising
from different counterions.

An exclusivity analysis of all screening collections shows
that only five of them (ASIp, CNR, MAY, NET, and TRI)
could be described as original as they contain more than 85%
druglike compounds not present elsewhere (Table 2). Sig-
nificant pairwise overlap exists between several libraries (e.g.,
ASIg, CBG, IBSs, CDIc, and VITs; see Tables A and B in
the Supporting Information). However, having several com-
mercial sources for a compound may be an advantage since
it still guarantees a purchase even if the corresponding
molecule is no longer available from a particular supplier.

What Is the Scaffold Diversity of Commercial Librar-
ies?A first scaffold classification (classification 1, Table 3)

Table 1. Example of ClassPharmer Classification on a Small Data
Set (20 Dopamine D2 Antagonists)

a Compounds found in multiple classes are indicated by bold
numbers.b The homogeneity of a class is the size (heavy atom count)
of the MCS divided by the size (heavy atom count) of the largest
compound in that class.

Table 2. Library Processing and Classification

supplier collection code size filtereda % druglike uniqueb exclusivec classifiedd

Asinex Gold ASIg 201 304 86 185 42.8 86 153 17 322 85 516
Platinum ASIp 120 563 71 255 59.1 71 255 69 716 70 978

ChemBridge EXPRESS-Pick+ H2LS CBG 709 975 327 716 49.5 181 291 72 484 161 827
Chemical Diversity CombiLab CDIc 230 529 104 606 47.8 104 604 62 361 104 520

International Diversity CDIi 133 085 39 859 45.9 39 831 13 571 39 401
CNRS National Chemical Library CNR 12 670 4978 39.3 4806 4571 4770
ChemStar CST 73 552 21 899 29.8 21 852 4857 21 758
InterBioScreen Natural IBSn 30 749 14 196 46.2 13 936 890 13 882

Synthetic IBSs 287 945 112 882 43.2 112 695 61 944 111 562
Maybridge MAY 59 204 20 754 35.1 20 726 17 793 20 680
Bionet NET 38 416 14 031 36.5 14 029 13 276 13 992
Specs SPE 172 970 65 563 37.9 65 539 20 499 65 319
Timtec Natural TIMn 4202 2083 49.6 1945 147 1941

Synthetic TIMs 95 469 33 669 35.3 33 560 7873 33 408
Tripos TRI 84 604 46 866 55.4 46 546 44 969 46 543
Vitas-M Stock VITs 134 167 52 583 39.2 52 544 8796 52 204

Tulip VITt 21 453 7190 33.5 7182 3778 7164
MDDR 2004.1 MDDR 98 880 37 857 38.3 35 563 35 142 35 033

a Using Filter 1.0.21 b Using Cliff22 with options “-unique 1 -usestereo 1”.c Compounds not found elsewhere by comparison of SciTegic canonical
SMILES generated by PipelinePilot 4.5.48 d After normalization step in ClassPharmer.19
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has been realized on the global set of 846 408 druglike
molecules passing the ClassPharmer normalization step. A
second one (classification 2) is a subset of the first one since
it accounts for classes populated by at least 25 unique
molecules. The second classification was undertaken to depict
the optimization potential of each class. Hence, a class
described by a low number of compounds might be of lower
interest for a medicinal chemist because of a possible lack
of synthetic tractability or insufficient statistics if the library
has to be assayed experimentally. It should be noticed that
there is still a lack of consensus on the minimal number of
compounds that should be stored to accurately describe a
class/cluster. McFayden et al.13 proposed a minimal value
of five compounds for postprocessing raw HTS data, whereas
Nilakantan and Nunn suggested that many more compounds
(100) should be selected for enumerating-scaffold focused
libraries.31

Using our classification method, there are generally 10-
30 times fewer classes (scaffolds) than molecules (Tables 2
and 3). Classification 1 afforded a total of 34 961 classes
and 53 980 singletons. Interestingly, the number of singletons
always exceeds that of classes for all libraries. Considering
the homogeneity of the input libraries which was set to
medium prior to the classification, most singletons do not
describe unique scaffolds but rather compounds which failed
to pass the homogeneity threshold level (i.e., the number of
heavy atoms in the scaffold is too small in comparison to
the overall size of the largest molecule in the class).
Classification 2 (only classes populated by at least 25
compounds) led to a smaller set of 4390 classes. Since a
single compound may be classified in different classes for a
single library, there is a significant level of redundancy across
the classes generated by ClassPharmer (about 10% on
average, Table 3) which biases relationships between the
number of classes and the number of compounds within a
library. To get unbiased relationships and a clearer com-
parison of the scaffold diversity of input libraries, the
redundancy was removed by a simple strategy aimed at
selecting the most central scaffold for a compound appearing

in multiple classes (Table 4). It is important to point out
that class redundancy among different libraries has not been
considered at this stage.

Two metrics (NC50C and PC50C) have been developed
to measure and compare the scaffold diversity of screening
collections. The first one (NC50C) is a simple measure of
the number of classes accounting for 50% of the classified
compounds for a particular collection. The NC50C descriptor
has been derived from a first plot (Figure 5) describing the
density (percentage of classified compounds) of each class
which was then transformed into a cumulative plot (Figure
6) allowing interpolation of the number of classes required
to describe 50% of classified compounds. The NC50C
descriptor can be regarded as the absolute scaffold diversity
of the collection. As expected, larger collections have higher

Table 3. Classification Results

classification 1a classification 2b

code # classes # singlc % redd NC50Ce PC50Cf # classes NC50C PC50C

ASIg 3491 5476 7.25 52 1.49 400 27 6.75
ASIp 1968 2907 9.27 27 1.37 252 19 7.54
CBG 3199 5269 15.79 45 1.41 709 32 4.51
CDIc 3430 5171 6.29 86 2.51 528 57 10.80
CDIi 2306 3447 7.99 62 2.69 219 27 12.33
CNR 391 662 2.74 26 6.65 33 7 21.21
CST 1011 1719 9.19 25 2.47 123 13 10.57
IBSn 757 1188 2.02 20 2.64 75 8 10.67
IBSs 3490 5370 5.25 68 1.95 492 48 9.76
MAY 1544 2501 12.59 84 5.44 151 30 19.87
NET 941 1230 5.72 58 6.16 107 21 19.63
SPE 3261 4971 8.11 59 1.81 313 27 8.63
TIMn 162 316 1.29 12 7.41 14 5 35.71
TIMs 1956 3445 7.23 67 3.43 207 28 13.53
TRI 1341 2041 11.55 33 2.46 282 22 7.80
VITs 2153 3134 8.85 35 1.63 237 20 8.44
VITt 402 513 6.59 16 3.98 48 9 18.75
MDDR 3058 4620 8.51 177 5.79 203 35 17.24

a Class defined as containing at least two unique compounds.b Class defined as containing at least 25 unique compounds.c Number of singletons.
d Percentage of interclass redundancy (percentage of compounds present in multiple classes).e Number of classes accounting for 50% of classified
compounds.f Percentage of classes accounting for 50% of classified compounds.

Table 4. Example of Interclass Redundancy

a The compound exemplified here (CD 05668, Maybridge) has a
molecular weight of 413.32 and three proposed scaffolds highlighted
in bold. b NR: number of R groups.c CSS (Central scaffold score))
(MWcompound- MWscaffold)/NR.

SCAFFOLD DIVERSITY OF SCREENING LIBRARIES J. Chem. Inf. Model., Vol. 46, No. 2, 2006517



NC50C values (Figure 7A), except for four collections which
either present a quite large panel of classes with respect to
their size (MAY, NET, and especially MDDR) or a low
number of classes (CBG). Discarding these four libraries, a
significant correlation could be found between size (number
of classified druglike compounds) and NC50C (r ) 0.75,
n ) 14, andp ) 0.002). Compared to the absolute scaffold
diversity for classes containing at least 25 compounds (Figure
7B), all collections shift to lower NC50C values with the
reference MDDR (Table 3, Figure 7B) performing the most
notable shift to the left, thus joining commercially available
collections. For classification 2, a significant correlation is
also observed between size and NC50C for all but the CBG
collection (r ) 0.70,n ) 17, andp ) 0.002).

Since the first metric is dependent on the size of each
collection, it cannot be used to compare the intrinsic scaffold

diversity. We, therefore, computed a second descriptor
(PC50C) estimating the percentage of classes accounting for
50% of the classified compounds (Table 3). It presents the
advantage of being independent of the size of the library
and, therefore, is more suitable for a comparative analysis
(Figure 7C). Strikingly, plotting the PC50C versus the size
of each collection allows segregation of the herein-analyzed
18 collections into four categories (Table 5). A first category
(CBG, IBSs, and CDIc), in agreement with a previous
report,32 regroups large combinatorial libraries for which a
very tiny percentage of the scaffolds (less than 3%) has been
overrepresented. Corresponding scaffolds are usually very
simple (e.g., N-benzylaniline; Table 6), account for over
10 000 unique compounds, and are available at a majority
of suppliers. Promiscuous scaffolds are also found in the
second category (e.g., N-phenylbenzenesulfonamide; Tables

Table 5. Classification of Collections According to Their Size and Relative Scaffold Diversity (PC50C)

category librariesa sizeb PC50Cc PC50C_25d

large combinatorial libraries CBG, CDIc, IBSs >100 K <3 <13
medium combinatorial libraries ASIg, ASIp, SPE, TRI, VITs 50-100 K <3 <13
diverse libraries CDIi, CST, IBSn, TIMs <50 K <4 10-15
highly diverse libraries CNR, MAY, MDDR, NET, TIMn, VITt <50 K >4 >15

a Libraries are indexed as shown in Table 1.b Number of drug-like and unique compounds passing the ClassPharmer normalization step.c PC50C
value derived from all classes of a library.d PC50C value derived from classes populated by at least 25 representatives.

Figure 5. Density of ClassPharmer classes (ASIg collection)
featuring the percentage of classified compounds for all classes. A
zoom on the most populated classes is boxed within the graph.

Table 6. Example of Characteristic Scaffolds for the Four Categories of Screening Collections

Figure 6. Interpolating the NC50C value by plotting the number
of classes versus the cumulative percentage of classified compounds
(ASIg collection). A zoom around the NC50C value is boxed within
the graph.
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Figure 7. Scaffold diversity of screening collections.
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5 and 6) of medium-sized combinatorial libraries (ASIg,
ASIp, SPE, TRI, and VITs). In a third group are found
libraries of smaller size (<50 000 druglike unique com-
pounds; Table 5) with more original and less-populated
scaffolds (CDIi, CST, IBSn, and TIMs). Last, a fourth
category of highly diverse libraries (CNR, MAY, NET,
TIMn, and VITt; Table 5) was identified nearby the reference
MDDR data set (Figure 7C). The latter two categories of
libraries are really diverse in terms of scaffold architecture
and generally present a larger choice of proprietary low-
populated scaffolds (see two prototypical examples in Table
6). These libraries are either collections of compounds from
various origins (CNR and MDDR) or natural sources (TIMn
and VITt) or have been synthesized by the supplier itself
with the purpose of optimizing diversity versus size (NET
and MAY). For example, the French National Chemical
Library (CNR)1 is a repository of compounds collected at
22 academic laboratories, each of them with a different
medicinal chemistry history. Likewise, collections labeled

“natural products” (TIMn and VITt) are, in fact, synthetic
compound libraries that are based on structures found in
nature.33 Acknowledging the high scaffold diversity found
in natural products, it is, therefore, logical to group them
into the fourth category of diverse libraries. Interestingly,
looking at the scaffold diversity of the same libraries
considering only those scaffolds populated by at least 25
compounds leads to identical clusters with a simple shift of
PC50C toward higher values (Figure 7D). Simple rules based
on the size (number of classified druglike and unique
compounds) and on PC50C values (all classes, classes with
more than 25 compounds) of 18 collections are provided
(Table 5) as a guide to classify libraries not investigated
herein.

Setting Up a Library of Nonredundant Classes.To set
up a single data set for registering all commercially available
scaffolds, all classes (except those arising from the reference
MDDR database) depicted by the previous analysis were
merged into a single library. Redundancy of the scaffolds
was removed by working with InChI codes, which enable
the detection of duplicates and tautomers. The resulting SBI
(Scaffold of theBIoinformatics Group of the CNRS) col-
lection contains a total of 21 393 unique classes, out of which
a surprisingly high number (16 583) are exclusively found
at one supplier (Table 7). Interestingly, compounds contained
in the classification represent 811 375 compounds, out of
which 556 107 have a unique InChI representation. Although
MDDR-derived scaffolds have not been incorporated into
the SBI scaffold library, it is interesting to note that 88% of
the MDDR scaffolds are nonoverlapping with those arising
from vendors (Table 7). About 3000 scaffolds are necessary
to cover all previously investigated biological activities by
the MDDR. If a target space orthogonal to that addressed
by the MDDR has to be investigated, we therefore suggest
screening any of the exclusive SBI scaffolds.

A more restrictive data set of 2498 classes comprises
scaffolds with a density of at least 25 compounds (Table 8).
Of these, 921 classes have only one supplier as their source.
A total of 329 (1.5%) scaffolds are discarded when the
compounds contained in a class are checked for uniqueness
by InChI. An R-group decomposition of all classes into
Markush structures indicates a distribution of substituents

Table 7. Distribution of Classes for the SBI Scaffold Library

library classesa exclusive classesb

ASIg 3485 1240 (36%)
ASIp 1964 1729 (88%)
CBG 3194 1213 (38%)
CDIc 3425 2325 (68%)
CDIi 2306 974 (42%)
CNR 391 299 (76%)
CST 1010 307 (30%)
IBSn 756 504 (67%)
IBSs 3484 1845 (57%)
MAY 1543 1052 (68%)
NET 941 722 (77%)
SPE 3260 1504 (46%)
TIMn 162 48 (30%)
TIMs 1954 700 (36%)
TRI 1338 1098 (82%)
VITs 2149 759 (35%)
VITt 402 264 (66%)
MDDRc 3057 2696 (88%)

a Nonredundant classes by comparison of INChI codes (Mobile H
Perception option on). For duplicate classes, a single copy has been
conserved corresponding to the first encountered library sorted by
alphabetical order.b Classes not found elsewhere (by comparison of
INChI codes).c MDDR-derived scaffolds are not included in the SBI
scaffold library. Statistics are only given for comparison purposes.

Table 8. Number of Scaffolds Which Are At Least/Exactly inn Screening Collections (DBs)

InChI InChI and at least 25 compounds

# of DBsn
# of scaffolds

in at leastn DBs
# of scaffolds

in exactlyn DBs
# of scaffolds

in at leastn DBs
# of scaffolds

in exactlyn DBs

1 21393 16583 2498 921
2 4810 2532 1577 431
3 2278 1009 1146 106
4 1269 501 853 251
5 768 300 602 194
6 468 179 408 133
7 289 97 275 84
8 192 71 191 70
9 121 39 121 39

10 82 25 82 25
11 57 20 57 20
12 37 19 37 19
13 18 3 18 3
14 15 6 15 6
15 9 7 9 7
16 2 1 2 1
17 1 1 1 1
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following a monoexponential decay (Figure 8A). A total of
75% of the stored scaffolds offer at least two substituents
and, thus, real diversity. The scaffold library can be easily
browsed by substructure, physicochemical properties, or
suppliers of the corresponding compounds (Figure 8B). A
unique code for each scaffold refers to the individual
suppliers and the corresponding Markush structures, thereby
enabling the comparison of commercial sources for a
particular scaffold (Figure 8B).

A molecular complexity of the SBI scaffold library was
investigated as recently proposed by Selzer et al.34 by
computing circular FCFP_4 fingerprints and extracting

FCFP_4 sizes and densities (Figure 9). FCP_4 density
calculated for all scaffolds of the SBI library indicate that a
large majority of scaffolds are complex enough (FCFP_4
density > 1) to ensure biological activity. A putative
application of the SBI library could then be the selection of
low-molecular-weight fragments for NMR screening.35-37

Because of their small size, the scaffolds selected herein
present a relatively high average self-similarity (average
Tanimoto coefficient of 0.74 using FCFP_4 fingerprints).
Customizing a fragment library out of the SBI data set would,
therefore, require the selection of the “least-substituted”
compounds for a subset of dissimilar molecular scaffolds.

Figure 8. The SBI scaffold library. (A) Distribution of the number of R groups for each scaffold. (B) Browsing the library. For each
scaffold, molecular descriptors (AlogP98, number of rotatable bonds, topological polar surface area, number of H-bond donors and acceptors,
number of rings, molecular weight, and number of unique compounds), vendor information (identity and number of suppliers), and a
unique SBI code enable an easy navigation in the chemistry space covered by commercial scaffolds. Selecting a particular scaffold (e.g.,
2-phenylthiazolidin-4-one) returns the corresponding classes indexed by commercial sources (TRI_3, VITs_1422; see a list of indexes in
Table 1) and the related Markush structures.
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It should be noted that several scaffold-based libraries have
already been reported in the past. Agrafiotis et al.38 described
a probe library based on 50 representative scaffolds compris-
ing 300 000 druglike compounds dedicated to primary
screening. Another design of a scaffold library was recently
reported by Card et al.,39 where 275 555 compounds (starting
with 1 994 133 molecules from 17 vendors, then filtered by
MW range) have been clustered according to their constituent
fragments (segmented at rotatable bonds) and similar com-
pounds were grouped (Tanimoto index> 0.85). This resulted
in 20 360 small molecular-weight fragments covering ap-
proximately 80% of the scaffold component space. Our
library presents the advantage of covering most commercially
available compounds and archiving scaffolds as a medicinal
chemist would do by intuition, thus enabling an easy
navigation in scaffold space and the selection of the most
relevant compounds according to simple user-defined queries.

On the Use of ClassPharmer Scaffolds.In the current
study, we have considered a scaffold from the ClassPharmer
definition: a “chemically aware” MCS taking into account
its chemical environment (e.g., a MCS substituted by an
aliphatic carbon chain will be different from the same one
substituted by an aromatic ring). We are aware that many
different scaffold definitions are possible (recall Figure 1)
and that the partitioning of compounds will be dependent
upon the selected scaffold definition. There are both advan-
tages and drawbacks in utilizing ClassPharmer for computing
molecular scaffolds out of large libraries. A first true
advantage is the ad hoc detection of MCS, which enables a
classification of all compounds of the library. Alternative
strategies based on the storage of precomputed chemical
features23 do not guarantee this exhaustiveness. Second, the
fuzziness of ring closure and atom match definitions can be

customized depending on the purpose. Here, we chose exact
definitions of the latter parameters to ensure a chemically
unique definition of each scaffold. Although tolerating
nonexact atom matches would enable taking into account
bioisosterism in the scaffold definition and, thus, significantly
decrease the number of scaffolds, fuzzy ring closure is clearly
not suited for archiving scaffolds as it would allow the
definition of inadequate substructures (e.g., three connected
carbon atoms of a phenyl ring) as classes. A postclassification
analysis of scaffolds present in our database is still possible,
notably by comparing their nonbonded interaction potentials40

or molecular shapes.41

Third, ClassPharmer MCSs describe not only the minimum
common substructure but also its chemical environment,
which enables a classification mirroring, for the most part,
the intuition of a medicinal chemist. Hence, many scaffolds
already identified by vendors within their collections42 can
be recovered in the SBI scaffold library. The ClassPharmer
MCS presents the advantage of being of various sizes (from
a ring scaffold to a superstructure, recall Table 1) and, thus,
reconciles multiple definitions of a scaffold. Proposed
classifications are easier to interpret (notably for a medicinal
chemist) than those arising from more complex hierachical
descriptions.13,43-45 Last, importing compounds from a new
collection into an existing classification is straightforward
and allows the quick evaluation of the scaffold overlap of
different collections.

A clear drawback of our approach is its low speed. When
a standard PC with 1 GB of RAM is used, only collections
with less than 150 000 compounds can be classified within
48 CPU hours. The regular upgrade of the scaffold library
is, thus, considerably penalized. Meanwhile alternative
classification approaches using hiercharchial descriptions13,43-45

Figure 9. Analyzing the molecular complexity of the scaffold library. (A) Number of heavy atoms. (B) FCFP_4 size: number of bits set
in the SciTegic functional connectivity fingerprints48 using a fragment diameter up to four bonds. (C) Self-similarity plot using FCFP_4
fingerprints and Tanimoto coefficient. (D) FCFP_4 density:34 FCFP_4 size/number of heavy atoms.
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or combining fingerprints and MCS methods46 have been
developed and might be considered under the conditions that
(i) it also produces chemically meaningful classes and (ii) a
significant increase in performance can be observed for the
same initial (huge) library size.

A limitation, for the purpose of scaffold archiving, is the
redundancy observed in the clustering (e.g., a particular
compound is often found in multiple classes). Although class
redundancy is not necessarily a problem in mining HTS data,
as it exactly reflects the point of view of a medicinal chemist,
it was a real hurdle in our study to quantify the population
covered by each class. To overcome this problem, we
developed a very simple approach which selects the most
“central scaffold” of each compound. It should be stated that
our protocol still generates a significant number of singletons.
Because of the overall low speed of the classification
procedure, we have not considered merging all singletons
and reclassifying this subset to populate existing classes or
to generate additional clusters. Likewise, reclustering single-
tons by similarity to existing cluster substructures46 is another
interesting alternative to reduce the number of singletons.

It is clear that different scaffold definition and clustering
methods will lead to quite different outcomes for a single
library. The herein-described statistics are, therefore, likely
to be very sensitive to the archiving protocol.

CONCLUSIONS

The molecular diversity of 17 commercially available
screening collections covering 2.4 million compounds was
evaluated by computing graph-based maximum common
substructures for each library. Two metrics (NC50C and
PC50C) were developed to facilitate the comparison of
libraries of various sizes. The herein-analyzed commercial
collections could be grouped into four categories depending
on their size and PC50C value (percentage of scaffolds
accounting for 50% of the classified compounds). Our
classification reflects the history of each collection and the
way it had been compiled (combinatorial libraries and
medicinal chemistry libraries). Merging all classes led to a
library of nonredundant scaffolds that can easily be browsed
for different purposes such as (i) defining a scaffold-focused
library47 starting from an existing hit and, thus, quickly
generating structure-activity relationships, (ii) defining a
general purpose library where a few copies of user-selected
diverse scaffolds are cherry picked,39 and (iii) setting up a
collection of small molecular-weight fragments for structural
biology screening37 (X-ray and NMR) by selecting the least
substituted compound(s) for user-defined classes.
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