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Medicinal chemists have traditionally realized assessments of chemical diversity and subsequent compound
acquisition, although a recent study suggests that experts are usually inconsistent in reviewing large data
sets. To analyze the scaffold diversity of commercially available screening collections, we have developed
a general workflow aimed at (1) identifying druglike compounds, (2) clustering them by maximum common
substructures (scaffolds), (3) measuring the scaffold diversity encoded by each screening collection
independently of its size, and finally (4) merging all common substructures in a nonredundant scaffold
library that can easily be browsed by structural and topological queries. Starting from 2.4 million compounds
out of 12 commercial sources, four categories of libraries could be identified: large- and medium-sized
combinatorial libraries (low scaffold diversity), diverse libraries (medium diversity, medium size), and highly
diverse libraries (high diversity, low size). The chemical space covered by the scaffold library can be searched
to prioritize scaffold-focused libraries.

INTRODUCTION demanding if calculated ad hoc. However, various definitions
of a scaffold are possible. For a given compound (e.g.,
dopamine D3 receptor antagonist BP-890; Figure 1), a
scaffold may be considered, among many possibilities, as a
maximum common substructure (MCB)the largest rigid
fragment or rings® molecular frameworks or Murcko’s
scaffold$® with or without descriptors (e.g., topological
torsions)t’ and molecular fragments as generated by the
RECAP method® According to the chosen definition, the
scaffold may be unique (superstructure) or multiple (two to
three substructures for BP-890). Therefore, depending on the
way a scaffold is regarded, very different substructures (eight

of a compound library. Very informative testimonials about in the present case) could be stored as representative of the

this key aim were shared with the community elsewlfere. cognate compound.

Nevertheless, molecular diversity is heavily dependent on During a medicinal chemistry project, it is not uncommon
the descriptors, metrics, and multivariate methods used tothat structural parts of the scaffold are redefined by either
assess it. Most studies on commercially available compoundéxtension or reduction. If the limit of one extreme is reached
librarie$8 have traditionally used physicochemical and by setting the full compound equal to the scaffold, how far
topological descriptors, summed up into a séareencoded can one reduce the compound structure to obtain a chemically
into fingerprintd® or hash code; 13 to evaluate the unique- ~meaningful scaffold? In the present study, we classified 17
ness and diversity of such libraries. Although fingerprints commercially available screening collections according to
can be quickly computed for large collections of compounds, graph-based maximum common substructtfraad joined

it results in classifications of molecular libraries that are not the resulting classification into a single library of nonredun-
very intuitive for medicinal chemists because a single class dant classes. A new metric (PC50C) is proposed to assess
of compounds may contain quite different molecular scaf- the diversity of a screening collection, by computing the
folds accessible by very different synthetic routes. Tradition- percentage of classes accounting for 50% of the classified
ally, medicinal chemists mining high-throughput screening compounds. Since this metric is independent of the size of
(HTS) data have organized hits into homogeneous chemicala library, it can be used to compare collections of different
series. Why not use the same partitioning method before thesizes.

virtual or real screening process? Archiving compounds by

scaffolds is much more natural but computationally more METHODS

With the advent of initiatives such as the CNRS “National
Chemical Library® or the NIH Molecular Libraries Initia-
tive,? public research rejoined the pharmaceutical industry
in its effort to organize and to curate small molecular-weight
molecules for the purpose of drug discovery and target
deorphanization. The drastic and steady increase of com-
mercially available compounds beginning in the early 1990s
provided chemical information scientists the opportunity to
enhance the diversity of their proprietary compound collec-
tions. The main challenge that remained over the years, which
is regularly revisited,is the way of measuring the diversity
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Figure 1. Possible representations of molecular scaffolds for the dopamine D3 antagonist BP-890.

Sereann Colloctons pounds for each library (see filtering rules in the Supporting
Information). In this step, counterions were removed and the

Drug-likeness & ionization state of each compound at physiological pH was
Duplicate Analysis assigned. For each collection, an additional step consisted

of eliminating remaining redundant compounds, taking

stereochemical information into account using the CLIFF
prograni? (please note that CLIFF has recently been split

[Remove interclasses_redundancy | into several separated routines).

Compound Classification.One of the major challenges
- was to obtain an organization of the screening collections
Calculate Non-redundant . . . s
InChI Scaffold library into chemically meaningful classes. ClassPharmer Suite’s
proprietary clustering methodoloywas adopted. To make

Number R-Group a clear distinction with the common association of clustering
n_|~cmnnﬂ_urld;_ decomposition with fingerprints in chemoinformatics, the grammatical root
v’ i~ “class” (classes/classification) is preferred over “cluster”

PP — (clusters/clustering). But, in strictly algorithmic terms, the
method used herein happens to be a clustering algorithm and
CURnH A doveeslty not a classification where one starts from predefined scaf-
by PCS0C, NC50C folds 23

Figure 2. General workflow for processing screening libraries. . .
9 P 9 9 Two parameters mainly influence the outcome of the

Database ProcessingThe screening collections used in  classification: the homogeneity and the redundancy level.
this study date from the last quarter of 2003 except the Homogeneity is related to the size (heavy atom count) of
MDDR, for which the first 2004 release has been used. A the scaffold divided by the size (heavy atom count) of the
total of 17 libraries from 12 suppliers plus the MDDR largest compound in the class. Redundancy describes to what
describe the commercially available chemical space ad-extenta compound is allowed to appear in multiple classes.
dressed by the present paper. It covers 2 410 857 compoundsience, the classes are represented by a scaffold assimilated
easily available as powders in vials. The collections need to the MCS. The underlying algorithm is covered by trade
also to have a computer-readable counterpart, delivered asecret but can, however, be approximately described as
an SDFile on a CD-ROM or downloadable from the follows: given a data set df compounds, (i) find topologi-
supplier's webpag@&The very first processing steps consisted cally aware (approximated) MCSs for all pairs, triplets,
of standardizing the structure and data headers of SD filesquadruplets, ..., antl — 1 groups of compounds passing
using an in-house Perl script. Property- or functional group- the user-defined homogeneity level; (ii) select the smallest
based filtering rule® implemented in OpenEye’s Filtér number of MCSs that fulfills the user-defined redundancy
program were then used to select the most suitable com-level while giving the minimal number of singletons, and if
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(exact) MCSs where subsets of a class with higher homo-
geneity can be found. The implementation of the algorithm Class
is preceded by a normalization process of the input structures.
For the present classification, the homogeneity and redun-
dancy were set to medium and low, respectively. Exact ring
closure and exact atom match parameters were chosen to Retrieve compounds
define classes. No subclasses were computed. Hereafter, the

the option is selected, (iii) generate subclasses with larger ?

X

term scaffold will, thus, be restricted to Bioreason’s MCS. / o \
Scaffold Distribution. The nonhierarchical disjunctive @ q NP
algorithm which was used allows that a compound belongs S
to more than one class. To compare the scaffold distribution oo ?
of different libraries, the interclass redundancy of a com- | Sompeunds ié %5 i
pound was removed using a Python script based on the 0 Oﬁ ©
OpenEye OEChem1.3 libraf.This task was achieved by @ij ' I [
computing the central scaffold score (CSS) of each compound/ k X x X /
class pair and assigning the compound to the class presenting . - -
the lowest CSS, calculated by the following equation: l Extract and iteratively
update a minimum
MWcompound_ MWscaffoId parsnicre
CSS=
NR Markush

structur

where MWompoungiS the molecular weight of a compound,
MW ¢catold the molecular weight of the scaffold, aiv the

number of substitution points (R groups). é

For every screening collection, the classes were ordered M, M, M,
by decreasing size and two metrics (NC50C and PC50C) Figure 3. R-group decomposition procedure from Classpharmer
computed. NC50C describes the number of nonredundantclassifications. For each class X, all compoundsg $ to X,) are
classes covering 50% of classified compounds. pC50Cextracteddand a Mdarkrl]Jsh §truc§ure| is (Fxtrgcted from the first
features the percentage. (.)f Cl_asses covering 50% of Class_iﬁecggg]eprg;lrﬂctu(r'\ed)(Ifﬂmby tag(rj]inge;ﬁgvﬁgxtr?nlglfecultg uitiﬂpllem:g@t
compounds. Two classifications were analyzed. In the first compound in the class has been processed to give the final
one, all classes of at least two unique compounds weresuperstructure (N).
investigated. In the second one, a threshold of 25 was
assigned to the minimal size of a class (number of unique decomposition was implemented in Python on the basis of
compounds). Classes populated by less than 25 uniqueOpenkEye OECher.
compounds will be referred to as “rare scaffolds” (Figure Setting Up a Scaffold Library. All classes (excluding
2). the singletons) were assembled from the generated clas-

R-Group Decomposition.The topology around the scaf-  sifications to form a scaffold library. Computing InChl
fold and generation of the corresponding SMILES strihgs  representations (“Mobile H Perception” option ON) for all
were obtained by R-group decomposition (see generalscaffolds gave the possibility to identify tautomeric forms
procedure in Figure 3). A compound subset and its corre- and group them together. All structural data were deposited
sponding ClassPharmer scaffold were the input for finding in a relational database (MySQL 4.1; for database structure,
the minimum common supergratunder the form of a  see the Supporting Information, Scheme A). Each scaffold
Markush structure. For each compound/scaffold pair, the was annotated with molecular properties (AlogP, polar
substitution points were determined and a scaffold with R surface area, hydrogen bond donor and acceptor count,
groups was generated. Among this R-group-labeled scaffold, rotatable bonds, and ring systems count) and the Markush
isomorphs were eliminated and the pairwise substructure structure SMILES. The main scaffold structure table can be
relationship was checked. This reduced considerably thebrowsed and queried by similarity, substructure, or super-
number of structures to compare. The remairihiglarkush structure using JChemB&8eand is freely accessible at
structures were then used to find the minimum common http://bioinfo-pharma.u-strasbg.fr/scaffolds.
super-Markush structure. The process is similar to the one
described by Brown et al., which identifies the hyperstruc- RESULTS AND DISCUSSION
ture?” and is outlined as follows:

ClassPharmer MCS and Classification.To illustrate the

SuperStructure := MarkushStructure(1) MCS and classification concepts in ClassPharmer, a very
FOR n :=2to N DO simple data set of 20 known dopamingdhtagonists (Figure
BEGIN 4) randomly chosen from the Hert data®8etas taken as a
COMPARE(SuperStructure, MarkushStructure(n)) . .
UPDATE CT() reference. When medium homogeneity and redundancy
END - settings were used, seven classes and four singletons were

generated. Interestingly, computed MCSs feature either
As for the removal of interclass redundancy, the R-group classical MCS (e.g., class 1), ring scaffolds (e.g., class 2),
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Figure 4. Structure of 20 true dopamine D-2 antagonists randomly extracted from the Hert d&ta set.

or even Murcko’s scaffolds (e.g., classes 3 and 5; Table 1). simple maximum common substructures. Not only the MCS
ClassPharmer MCSs span at least half of the largestbut its chemical environment should be conserved to group
compound’s size (heavy atom count) in the class (Table 1) compounds in the same class. Fuzzier definitions are of
according to the user-defined homogeneity level. Therefore, course possible (e.g., disabling exact atom matches and ring
generating larger or smaller MCSs is easily customizable closures), but resulting classifications would be more difficult
by adjusting the homogeneity setting. Here, singletons areto interpret and, therefore, have not been investigated in the
compounds which either bear a MCS not present in any otherpresent paper.

compound (e.g., compounds 13 and 15; Figure 4) or present A second parameter that influences the classification is
a known MCS but fail to pass the homogeneity criterion (e.g., the level of accepted redundancy (how many times a
high-molecular-weight compound, no case in Table 1) or for compound may appear in multiple classes). Using a medium
which a common MCS could be found (e.g., phenyl- redundancy, several compounds are found in at least two
piperazine) but with a different chemical environment (the classes (Table 1). For the general purpose of HTS data
benzofuranyl-piperazine 2 is not classified with the phenyl- analysis, this is not really a problem and many medicinal
piperazines 3, 7, 11, and 19 in class 1; Figure 4 and Tablechemists would indeed reproduce the herein-reported clas-
1). ClassPharmer MCSs are, therefore, more complex thansification. However, to compare the scaffold diversity of
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Table 1. Example of ClassPharmer Classification on a Small Data  do not claim that this kind of classification is the best one,

Set (20 Dopamine PAntagonists) but it allows a robust and chemically intuitive grouping of

Class — Compounds”  MCS Homogeneity most drug-like compounds that we have seen up to now.

| 3.7.11.19 @_N\_/N\/\ 0.5 Processing the.Libraries.Ir.\ a first step, 17 commercially _
available screening collections were processed to retain

s unique druglike molecules. In addition, a prototypical col-

2 16, 18,19, 20 . Ng}—@ 051 lection of druglike compounds (MDDR) was taken as

reference to delimit true druglike chemistry space. In
agreement with previous repoft&the percentage of drug-

N F ike molecules in these collections varies from ca. 0
N lik lecules in th llecti ies f 30%
. 4.6 & N 089 (ChemsStar) to 60% (Asinex Platinum) (see Table 2). No
N relationships could be established between size and drug-
likeness of the libraries. It should be noted that a set of very
N// strict rules (see the Supporting Information, Chart A)

especially regarding molecular weight (250MW < 500)
and Lipinski’s rule of five violations (none) was used herein.
N Considering the MDDR as a reference druglike data set, we
can thus consider most of the screening collections inves-
o /\(j tigated here to be druglike, reflecting the effort of vendors
N to produce higher quality collectiodsinternal duplicates
Q Q ' (compounds present several times within the same collection)
- ranged from none (ASlp) to 320 compounds (TRI). An
exceptionally high number (146 425) was found for CBG
\‘NC\>_© 053 but could be explained by the previous merge of two
screening collections (EXPRESS-Pick and Hit2Lead) into a

A_v single data set. Retrospectively, only two compounds would
7 312 0 ﬁ 0.75 have been duplicated in CBG Express-Pick. For the MDDR,
el
/

6 16,17, 18

there were still 2294 duplicates left, most of them arising
from different counterions.

Singletons 2, 13, 14, 15 An exclusivity analysis of all screening collections shows

_ _ o that only five of them (ASIp, CNR, MAY, NET, and TRI)
nu:ﬂ%‘;’:;%?h”edflo‘;ggggng}ty”;‘;'gpc'?as‘;'ai‘;sstﬁz S?ng ('Qg;‘ﬁz‘sogycgfr'% could be described as original as they contain more than 85%
of the MCS divided by the size (heavy atom count) of the largest d_rgghke C.Om.pounds not present elsewhere (Tf"‘b'e.z)' Sig-
compound in that class. nificant pairwise overlap exists between several libraries (e.g.,

ASIg, CBG, IBSs, CDIc, and VITs; see Tables A and B in
heterogeneous screening collections with our new metricsthe Supporting Information). However, having several com-
(NC50C and PC50C) and facilitate the subsequent analysis,mercial sources for a compound may be an advantage since
we preferred to simply remove redundancy by adjusting the it still guarantees a purchase even if the corresponding
redundancy parameter to low (the most recent release ofmolecule is no longer available from a particular supplier.
ClassPharmer even allows to set this parameter to none) and What Is the Scaffold Diversity of Commercial Librar-
postprocess the obtained classification as reported above. Wées?A first scaffold classification (classification 1, Table 3)

Table 2. Library Processing and Classification

supplier collection code size filtered % druglike uniqué  exclusivé classified
Asinex Gold ASlg 201 304 86 185 42.8 86 153 17 322 85516
Platinum ASIp 120 563 71255 59.1 71 255 69 716 70978
ChemBridge EXPRESS-Pick H2LS CBG 709975 327716 495 181 291 72484 161 827
Chemical Diversity =~ CombilLab CDIc 230529 104 606 47.8 104 604 62 361 104 520
International Diversity CDli 133085 39 859 459 39831 13571 39401
CNRS National Chemical Library ~ CNR 12 670 4978 39.3 4806 4571 4770
ChemStar CST 73552 21899 29.8 21852 4857 21758
InterBioScreen Natural IBSn 30 749 14 196 46.2 13936 890 13882
Synthetic IBSs 287945 112882 43.2 112 695 61944 111 562
Maybridge MAY 59 204 20 754 35.1 20726 17 793 20 680
Bionet NET 38416 14 031 36.5 14029 13276 13992
Specs SPE 172 970 65563 37.9 65 539 20 499 65 319
Timtec Natural TIMn 4202 2083 49.6 1945 147 1941
Synthetic TIMs 95 469 33669 35.3 33560 7873 33408
Tripos TRI 84 604 46 866 55.4 46 546 44 969 46 543
Vitas-M Stock VITs 134 167 52 583 39.2 52 544 8796 52 204
Tulip VITt 21 453 7190 335 7182 3778 7164
MDDR 2004.1 MDDR 98 880 37857 38.3 35563 35142 35033

aUsing Filter 1.0?* ® Using Cliff?2 with options “-unique 1 -usestereo 1”Compounds not found elsewhere by comparison of SciTegic canonical
SMILES generated by PipelinePilot 4'%.9 After normalization step in ClassPharnir.
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Table 3. Classification Results

classification classification 2

code # classes # sirfgl % red' NC50C pPC50C¢ # classes NC50C PC50C
ASIg 3491 5476 7.25 52 1.49 400 27 6.75
ASIp 1968 2907 9.27 27 1.37 252 19 7.54
CBG 3199 5269 15.79 45 1.41 709 32 451
CDlIc 3430 5171 6.29 86 2.51 528 57 10.80
CDli 2306 3447 7.99 62 2.69 219 27 12.33
CNR 391 662 2.74 26 6.65 33 7 21.21
CST 1011 1719 9.19 25 2.47 123 13 10.57
IBSn 757 1188 2.02 20 2.64 75 8 10.67
IBSs 3490 5370 5.25 68 1.95 492 48 9.76
MAY 1544 2501 12.59 84 5.44 151 30 19.87
NET 941 1230 5.72 58 6.16 107 21 19.63
SPE 3261 4971 8.11 59 1.81 313 27 8.63
TIMn 162 316 1.29 12 7.41 14 5 35.71
TIMs 1956 3445 7.23 67 3.43 207 28 13.53
TRI 1341 2041 11.55 33 2.46 282 22 7.80
VITs 2153 3134 8.85 35 1.63 237 20 8.44
VITt 402 513 6.59 16 3.98 48 9 18.75
MDDR 3058 4620 8.51 177 5.79 203 35 17.24

aClass defined as containing at least two unique compolr@isss defined as containing at least 25 unique compoumdismber of singletons.
d Percentage of interclass redundancy (percentage of compounds present in multiple €lbssebpr of classes accounting for 50% of classified
compoundsf Percentage of classes accounting for 50% of classified compounds.

Table 4. Example of Interclass Redundancy
‘'ompound* MW(scaffold) Nr® CSSs*¢

jed
Cl
S

S
| N

has been realized on the global set of 846 408 druglike
molecules passing the ClassPharmer normalization step. AC
second one (classification 2) is a subset of the first one since
it accounts for classes populated by at least 25 unique

molecules. The second classification was undertaken to depict . /Q\

b

H
N

the optimization potential of each class. Hence, a class N o ’ -

described by a low number of compounds might be of lower k@

interest for a medicinal chemist because of a possible lack

of synthetic tractability or insufficient statistics if the library a

has to be assayed experimentally. It should be noticed that HNQ:CI

there is still a lack of consensus on the minimal number of | N 218 4 55

compounds that should be stored to accurately describe a o ko

class/cluster. McFayden et dlproposed a minimal value L~

of five compounds for postprocessing raw HTS data, whereas

Nilakantan and Nunn suggested that many more compounds a

(100) should be selected for enumerating-scaffold focused HN/@C,

libraries3! E NNs 184 3 61
Using our classification method, there are generally 10 N K@

30 times fewer classes (scaffolds) than molecules (Tables 2 N

and 3). Clas_sification 1 affordgd a total of 34 961. classes aThe compound exemplified here (CD 05668, Maybridge) has a
and 53 980 singletons. Interestingly, the,num_ber of S'”Q'et‘?”s molecular weight of 413.32 and three proposed scaffolds highlighted
always exceeds that of classes for all libraries. Consideringin pold.® Ng: number of R groups: CSS (Central scaffold score

the homogeneity of the input libraries which was set t0 (MW compound— MW scafiold/Nr.

medium prior to the classification, most singletons do not
describe unique scaffolds but rather compounds which failed in multiple classes (Table 4). It is important to point out
to pass the homogeneity threshold level (i.e., the number ofthat class redundancy among different libraries has not been
heavy atoms in the scaffold is too small in comparison to considered at this stage.

the overall size of the largest molecule in the class). Two metrics (NC50C and PC50C) have been developed
Classification 2 (only classes populated by at least 25 to measure and compare the scaffold diversity of screening
compounds) led to a smaller set of 4390 classes. Since acollections. The first one (NC50C) is a simple measure of
single compound may be classified in different classes for a the number of classes accounting for 50% of the classified
single library, there is a significant level of redundancy across compounds for a particular collection. The NC50C descriptor
the classes generated by ClassPharmer (about 10% orhas been derived from a first plot (Figure 5) describing the
average, Table 3) which biases relationships between thedensity (percentage of classified compounds) of each class
number of classes and the number of compounds within awhich was then transformed into a cumulative plot (Figure
library. To get unbiased relationships and a clearer com- 6) allowing interpolation of the number of classes required
parison of the scaffold diversity of input libraries, the to describe 50% of classified compounds. The NC50C
redundancy was removed by a simple strategy aimed atdescriptor can be regarded as the absolute scaffold diversity
selecting the most central scaffold for a compound appearingof the collection. As expected, larger collections have higher
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Table 5. Classification of Collections According to Their Size and Relative Scaffold Diversity (PC50C)

category libraries size PC50C PC50C_25%
large combinatorial libraries CBG, CDlc, IBSs >100 K <3 <13
medium combinatorial libraries ASlg, ASlIp, SPE, TRI, VITs -5000 K <3 <13
diverse libraries CDIi, CST, IBSn, TIMs <50 K <4 10-15
highly diverse libraries CNR, MAY, MDDR, NET, TIMn, VITt <50 K >4 >15

2 Libraries are indexed as shown in Table Number of drug-like and unique compounds passing the ClassPharmer normalizaticriP€8pC
value derived from all classes of a libra®PC50C value derived from classes populated by at least 25 representatives.

S —~ 100 -
S
c
80
_ -t,%, 50.04
= o
= 3 60 - 50.02
2 2 50.00
2 g
§ % 49.98
g 2 49.96
3
o ol 514 515 516
: - 0 500 1000 1500 2000 2500 3000 3500
0 500 3500 Classes (#)

Classes (#) Figure 6. Interpolating the NC50C value by plotting the number
Figure 5. Density of ClassPharmer classes (ASlg collection) of classes versus the cumulative percentage of classified compounds
featuring the percentage of classified compounds for all classes. A(ASIg collection). A zoom around the NC50C value is boxed within
zoom on the most populated classes is boxed within the graph. the graph.

NC50C values (Figure 7A), except for four collections which diversity. We, therefore, computed a second descriptor
either present a quite large panel of classes with respect to(PC50C) estimating the percentage of classes accounting for
their size (MAY, NET, and especially MDDR) or a low 50% of the classified compounds (Table 3). It presents the
number of classes (CBG). Discarding these four libraries, a advantage of being independent of the size of the library
significant correlation could be found between size (number and, therefore, is more suitable for a comparative analysis
of classified druglike compounds) and NC50C= 0.75, (Figure 7C). Strikingly, plotting the PC50C versus the size
n = 14, andp = 0.002). Compared to the absolute scaffold of each collection allows segregation of the herein-analyzed
diversity for classes containing at least 25 compounds (Figure18 collections into four categories (Table 5). A first category
7B), all collections shift to lower NC50C values with the (CBG, IBSs, and CDIc), in agreement with a previous
reference MDDR (Table 3, Figure 7B) performing the most report32 regroups large combinatorial libraries for which a
notable shift to the left, thus joining commercially available very tiny percentage of the scaffolds (less than 3%) has been
collections. For classification 2, a significant correlation is overrepresented. Corresponding scaffolds are usually very
also observed between size and NC50C for all but the CBG simple (e.g., N-benzylaniline; Table 6), account for over
collection ¢ = 0.70,n = 17, andp = 0.002). 10 000 unique compounds, and are available at a majority
Since the first metric is dependent on the size of each of suppliers. Promiscuous scaffolds are also found in the
collection, it cannot be used to compare the intrinsic scaffold second category (e.g., N-phenylbenzenesulfonamide; Tables

Table 6. Example of Characteristic Scaffolds for the Four Categories of Screening Collections

Category Scaffold Identifier Suppliers Uniques compounds
FYN Y.
combinatorial N SBI 4853 15 22 988
Libraries
Medium H Q
combinatorial st SBI_2909 10 8592
Libraries ©/ 0 o

O =N,

| | NH

Diverse Libraries SBI 2654 1 322

N7 =

Highly Diverse N/ SBI 21089 1 106
Libraries \ B
S
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Figure 7. Scaffold diversity of screening collections.
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Table 7. Distribution of Classes for the SBI Scaffold Library “natural products” (TIMn and VITt) are, in fact, synthetic
library classes exclusive classés compound libraries that are based on structures found in
ASIg 3485 1240 (36%) pature?3 Acknowledg?ng the high scaffolld diversity found
ASIp 1964 1729 (88%) in natural products, it is, therefore, logical to group them
CBG 3194 1213 (38%) into the fourth category of diverse libraries. Interestingly,
CDlc 3425 2325 (68%) looking at the scaffold diversity of the same libraries
Co 2306 ora (32%) idering only th ffold lated by at least 25
CNR 301 299 (76%) considering only those scaffolds populated by at leas
CST 1010 307 (30%) compounds leads to identical clusters with a simple shift of
IBSn 756 504 (67%) PC50C toward higher values (Figure 7D). Simple rules based
IBSs 3484 1845 (57%) i ifi i i
MAY 1543 1052 (68%) on the s:jze (ngmbePrC%focczlas?ﬁed ?Irulgllke antlj unlque_th
NET 041 722 (17%) compounds) and on values (all ¢ asses, classes wi
SPE 3260 1504 (46%) more than 25 compounds) of 18 collections are provided
TIMn 162 48 (30%) (Table 5) as a guide to classify libraries not investigated
TIMs 1954 700 (36%) herein
TRI 1338 1098 (82%) X )

VITs 2149 759 (35%) Setting Up a Library of Nonredundant Classes.To set
viTe 402 264 (66%0) up a single data set for registering all commercially available
MDDR 3057 2696 (88%) scaffolds, all classes (except those arising from the reference

aNonredundant classes by comparison of INChl codes (Mobile H MDDR d.atabasg) dep.'Cted by the previous analysis were
Perception option on). For duplicate classes, a single copy has beenmerged into a single library. Redundancy of the scaffolds
conserved corresponding to the first encountered library sorted by was removed by working with InChl codes, which enable
?ﬁ,“?ﬁbeﬁj""' OF&eglchLajS?S r(‘jOt fO?fr‘ldd ebeWhe{? (lfydcﬂmpfﬁisosng?f the detection of duplicates and tautomers. The resulting SBI
codes).c -aerivea scarfolds are not incluaed in tnhe H .
scaffold Iibra)ry. Statistics are only given for comparison purposes. (chffold of 'FheBIomformatlcs Grqup of the CNRS) COI-.
lection contains a total of 21 393 unique classes, out of which
a surprisingly high number (16 583) are exclusively found
at one supplier (Table 7). Interestingly, compounds contained
in the classification represent 811 375 compounds, out of
which 556 107 have a unique InChl representation. Although
MDDR-derived scaffolds have not been incorporated into
the SBI scaffold library, it is interesting to note that 88% of
the MDDR scaffolds are nonoverlapping with those arising
from vendors (Table 7). About 3000 scaffolds are necessary

5 and 6) of medium-sized combinatorial libraries (ASlg,
ASIp, SPE, TRI, and VITs). In a third group are found
libraries of smaller size {50 000 druglike unique com-
pounds; Table 5) with more original and less-populated
scaffolds (CDIli, CST, IBSn, and TIMs). Last, a fourth
category of highly diverse libraries (CNR, MAY, NET,
TIMn, and VITt; Table 5) was identified nearby the reference
MDDR data set (Figure 7C). The latter two categories of 3 : ) ) ) o
libraries are really diverse in terms of scaffold architecture {0 cover all previously investigated biological activities by
and generally present a larger choice of proprietary low- the MDDR. If a target space o_rthogonal to that addressed
populated scaffolds (see two prototypical examples in Table PY the MDDR has to be investigated, we therefore suggest
6). These libraries are either collections of compounds from Screening any of the exclusive SBI scaffolds.

various origins (CNR and MDDR) or natural sources (TIMn A more restrictive data set of 2498 classes comprises
and VITt) or have been synthesized by the supplier itself scaffolds with a density of at least 25 compounds (Table 8).
with the purpose of optimizing diversity versus size (NET Of these, 921 classes have only one supplier as their source.
and MAY). For example, the French National Chemical A total of 329 (1.5%) scaffolds are discarded when the
Library (CNR) is a repository of compounds collected at compounds contained in a class are checked for uniqueness
22 academic laboratories, each of them with a different by InChl. An R-group decomposition of all classes into
medicinal chemistry history. Likewise, collections labeled Markush structures indicates a distribution of substituents

Table 8. Number of Scaffolds Which Are At Least/Exactly mScreening Collections (DBs)

InChl INChl and at least 25 compounds
# of scaffolds # of scaffolds # of scaffolds # of scaffolds
# of DBsn in at leasin DBs in exactlyn DBs in at leastn DBs in exactlyn DBs
1 21393 16583 2498 921
2 4810 2532 1577 431
3 2278 1009 1146 106
4 1269 501 853 251
5 768 300 602 194
6 468 179 408 133
7 289 97 275 84
8 192 71 191 70
9 121 39 121 39
10 82 25 82 25
11 57 20 57 20
12 37 19 37 19
13 18 3 18 3
14 15 6 15 6
15 9 7 9 7
16 2 1 2 1
17 1 1 1 1
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Figure 8. The SBI scaffold library. (A) Distribution of the number of R groups for each scaffold. (B) Browsing the library. For each
scaffold, molecular descriptors (AlogP98, number of rotatable bonds, topological polar surface area, number of H-bond donors and acceptors,
number of rings, molecular weight, and number of unique compounds), vendor information (identity and number of suppliers), and a
unique SBI code enable an easy navigation in the chemistry space covered by commercial scaffolds. Selecting a particular scaffold (e.g.,
2-phenylthiazolidin-4-one) returns the corresponding classes indexed by commercial sources (TRI_3, VITs_1422; see a list of indexes in
Table 1) and the related Markush structures.

following a monoexponential decay (Figure 8A). A total of FCFP_4 sizes and densities (Figure 9). FCP_4 density
75% of the stored scaffolds offer at least two substituents calculated for all scaffolds of the SBI library indicate that a
and, thus, real diversity. The scaffold library can be easily large majority of scaffolds are complex enough (FCFP_4
browsed by substructure, physicochemical properties, ordensity > 1) to ensure biological activity. A putative
suppliers of the corresponding compounds (Figure 8B). A application of the SBI library could then be the selection of
unique code for each scaffold refers to the individual low-molecular-weight fragments for NMR screenittg®’
suppliers and the corresponding Markush structures, therebyBecause of their small size, the scaffolds selected herein
enabling the comparison of commercial sources for a present a relatively high average self-similarity (average

particular scaffold (Figure 8B). Tanimoto coefficient of 0.74 using FCFP_4 fingerprints).
A molecular complexity of the SBI scaffold library was Customizing a fragment library out of the SBI data set would,
investigated as recently proposed by Selzer et dy therefore, require the selection of the “least-substituted”

computing circular FCFP_4 fingerprints and extracting compounds for a subset of dissimilar molecular scaffolds.
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Figure 9. Analyzing the molecular complexity of the scaffold library. (A) Number of heavy atoms. (B) FCFP_4 size: number of bits set
in the SciTegic functional connectivity fingerpriftausing a fragment diameter up to four bonds. (C) Self-similarity plot using FCFP_4
fingerprints and Tanimoto coefficient. (D) FCFP_4 dend#ty¥CFP_4 size/number of heavy atoms.

It should be noted that several scaffold-based libraries havecustomized depending on the purpose. Here, we chose exact
already been reported in the past. Agrafiotis éfdescribed definitions of the latter parameters to ensure a chemically
a probe library based on 50 representative scaffolds compris-unique definition of each scaffold. Although tolerating
ing 300 000 druglike compounds dedicated to primary nonexact atom matches would enable taking into account
screening. Another design of a scaffold library was recently bioisosterism in the scaffold definition and, thus, significantly
reported by Card et al’ where 275 555 compounds (starting decrease the number of scaffolds, fuzzy ring closure is clearly
with 1 994 133 molecules from 17 vendors, then filtered by not suited for archiving scaffolds as it would allow the
MW range) have been clustered according to their constituentdefinition of inadequate substructures (e.g., three connected
fragments (segmented at rotatable bonds) and similar com-carbon atoms of a phenyl ring) as classes. A postclassification
pounds were grouped (Tanimoto index0.85). This resulted  analysis of scaffolds present in our database is still possible,
in 20 360 small molecular-weight fragments covering ap- notably by comparing their nonbonded interaction poterifials
proximately 80% of the scaffold component space. Our or molecular shap€eSs.
library presents the advantage of covering most commercially  Third, ClassPharmer MCSs describe not only the minimum
available compounds and archiving scaffolds as a medicinalcommon substructure but also its chemical environment,
chemist would do by intuition, thus enabling an easy which enables a classification mirroring, for the most part,
navigation in scaffold space and the selection of the most the intuition of a medicinal chemist. Hence, many scaffolds
relevant compounds according to simple user-defined queriesalready identified by vendors within their collectidhsan

On the Use of ClassPharmer Scaffoldsln the current be recovered in the SBI scaffold library. The ClassPharmer
study, we have considered a scaffold from the ClassPharmeiMCS presents the advantage of being of various sizes (from
definition: a “chemically aware” MCS taking into account a ring scaffold to a superstructure, recall Table 1) and, thus,
its chemical environment (e.g., a MCS substituted by an reconciles multiple definitions of a scaffold. Proposed
aliphatic carbon chain will be different from the same one classifications are easier to interpret (notably for a medicinal
substituted by an aromatic ring). We are aware that many chemist) than those arising from more complex hierachical
different scaffold definitions are possible (recall Figure 1) descriptiond34345 Last, importing compounds from a new
and that the partitioning of compounds will be dependent collection into an existing classification is straightforward
upon the selected scaffold definition. There are both advan-and allows the quick evaluation of the scaffold overlap of
tages and drawbacks in utilizing ClassPharmer for computing different collections.
molecular scaffolds out of large libraries. A first true A clear drawback of our approach is its low speed. When
advantage is the ad hoc detection of MCS, which enables aa standard PC with 1 GB of RAM is used, only collections
classification of all compounds of the library. Alternative with less than 150 000 compounds can be classified within
strategies based on the storage of precomputed chemicalt8 CPU hours. The regular upgrade of the scaffold library
feature®® do not guarantee this exhaustiveness. Second, theis, thus, considerably penalized. Meanwhile alternative
fuzziness of ring closure and atom match definitions can be classification approaches using hiercharchial descrigéi¢h®®
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or combining fingerprints and MCS methdéifiave been B, percentage of overlap of classified compounds of a database
developed and might be considered under the conditions that® With database B; Table C, number of overlapping classes

N . . - y pairwise comparison; and Table D, percentage of over-
(i) it also produces chemically meaningful classes and (ii) a lapping classes by pairwise comparison of a database A with

significant increase in performance can be observed for theqatabase B. This information is available free of charge via

same initial (huge) library size. the Internet at http:/pubs.acs.org.
A limitation, for the purpose of scaffold archiving, is the
redundancy observed in the clustering (e.g., a particular REFERENCES AND NOTES
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