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Inferring the biological function of a protein from its three-dimensional structure as well as explaining why
a drug may bind to various targets is of crucial importance to modern drug discovery. Here we present a
generic 4833-integer vector describing druggable protein—ligand binding sites that can be applied to any
protein and any binding cavity. The fingerprint registers counts of pharmacophoric triplets from the Ca
atomic coordinates of binding-site-lining residues. Starting from a customized data set of diverse
protein—ligand binding site pairs, the most appropriate metric and a similarity threshold could be defined
for similar binding sites. The method (FuzCav) has been used in various scenarios: (i) screening a collection
of 6000 binding sites for similarity to different queries; (ii) classifying protein families (serine endopeptidases,
protein kinases) by binding site diversity; (iii) discriminating adenine-binding cavities from decoys. The
fingerprint generation and comparison supports ultra-high throughput (ca. 1000 measures/s), does not require
prior alignment of protein binding sites, and is able to detect local similarity among subpockets. It is thus
particularly well suited to the functional annotation of novel genomic structures with low sequence identity

to known X-ray templates.

INTRODUCTION

Fast and exhaustive comparison of protein—ligand binding
sites is of crucial importance to predict the biological function
of a protein and design safer drugs able to modulate their
activity.! Until the 1990s, the Protein Data Bank,> which
stores all publicly available protein three-dimensional (3-D)
structures, was relatively poor in terms of target diversity.
Thanks to remarkable advances in molecular and structural
biology, high-resolution structural information on druggable
protein—ligand binding sites® has reached a level of matura-
tion allowing general rules about protein—ligand interaction
patterns to be derived* and paradigms in drug discovery to
be changed. For example, the sc-PDB data set of druggable
protein—ligand binding sites from the Protein Data Bank
currently stores about 5900 binding sites from more than
2000 unique proteins and 3000 unique ligands.*> Exhaustive
comparisons of protein—ligand binding sites are notably
believed to directly influence two recent research areas:
structural genomics and chemogenomics.

Outstanding efforts of genomic consortia worldwide
contribute to significantly improve the structural description
of the proteome® until nearly full coverage of the current
UniProt database,” which is anticipated in ca. 15 years.®
However, designing low-molecular-weight ligands from a
protein 3-D structure is not straightforward notably for
ligand-free proteins (apo form). Fast comparison of novel
druggable cavities to ligand-annotated binding sites can be
used to identify putative targets of existing ligands.”'”
Besides structural genomics, chemogenomics is a novel
multidisplinary research area aimed at identifying all possible
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ligands of all possible targets.'' Since the target—ligand
interaction matrix is still very sparse and cannot be fully
completed experimentally, bio- and chemoinformatics ap-
proaches have been developed to predict ligand binding to
a wide array of protein cavities.'? In both applications, there
is a basic need to compare, at a high throughput, protein—
ligand binding sites. Assuming that similar ligands bind to
similar cavities, function and ligands for a novel protein may
be inferred from structurally similar liganded cavities. Since
binding site similarities may be quite difficult to detect from
amino acid sequences, 3-D computational methods for
quantifying global or local similarities between protein
cavities have been developed in the past decade.'’ All
described methods follow the same three-step flowchart.
First, the structures of the two proteins to compare are parsed
into meaningful 3-D coordinates to reduce the complexity
of the pairwise comparison. Typically, only key residues/
atoms are considered and described by a limited number of
points, which are labeled according to pharmacophoric,
geometric, and/or chemical properties of their neighborhood.
Second, the two resulting patterns are structurally aligned
using notably clique detection'*'> and geometric hashing'®!”
methods to identify the maximum number of equivalent
points. Last, a scoring function quantifies the number of
aligned features. In the pairwise comparison, a critical step
is the search for the best possible structural alignment.
Threfore, an erroneous alignment will lead to an underesti-
mated similarity score. Moreover, the alignment step can be
computer-intensive and can prevent generation of all-against-
all distance matrices for several thousand PDB entries.
Alignment-free quantification of binding site similarities is
therefore highly desirable, and only a few algorithms have
tacked this problem up to now. Starting from GRID

© XXXX American Chemical Society



B J. Chem. Inf. Model., Vol. xxx, No. xx, XXXX

molecular interaction fields,'"® FLAP' converts energy
minimum points into a pharmacophore fingerprint registering
all possible quadruplets of features. FLAP has been shown
to be quite useful in mapping ligand space to target space
by matching their corresponding pharmacophoric finger-
prints,'? but its application to compare binding sites has been
limited to a small number of protein kinases and is hampered
by the complexity of the fingerprint as well as the computing
time needed to generate molecular interaction fields for a
set of nonredundant probe atoms. PocketMatch?® describes
a binding pocket as a set of 90 lists of sorted distances
between three sets of critical atoms (Co,, C3, and the centroid
of the side chain) of any cavity-lining residue classified into
five groups according to their physicochemical properties.
Similarity between two binding sites is scored as the net
average of the number of matching distances in the 90 lists
as a fraction of the total number of distance elements in the
bigger set. The method is fast (250 comparisons/s on a single
CPU) and was shown to be able to detect cavity similarities
among unrelated proteins that state-of-the-art protein align-
ment algorithms could not find.*® A putative drawback of
the method is that residues are grouped according to standard
amino acid similarity rules and that protein cavities accom-
modating the same ligand sometimes show no strong
conservation of cavity-lining amino acids.?' To account for
the real shape of the cavity, Yin et al.?* recently proposed a
novel frame invariant descriptor of binding pockets in which
surface patches are encoded by a geometric fingerprint of
60 bins describing a distance-dependent distribution of
surface curvatures. A significant limit of the approach is its
sensitivity to small variations of atomic coordinates for the
same cavity (e.g., apoenzyme vs holoenzyme).

We therefore think that there is still room for improving
currently existing alignment-free cavity comparison algo-
rithms along three lines: (i) insensitivity to moderate varia-
tions (<3 A) of atomic coordinates, (ii) mapping pharma-
cophoric properties to cavity-lining residues to accurately
describe all possible interactions with putative ligands, (iii)
suitability to ultra-high throughput. We herewith introduce
a novel method (FuzCav) which allows a fast and systematic
comparison of protein—ligand binding sites. It takes its
foundation from previous studies to efficiently encode
molecular properties of low-molecular-weight compounds
into pharmacophore fingerprints.>*> IUPAC defines a phar-
macophore as “an ensemble of steric and electronic features
that is necessary to ensure the optimal supramolecular
interactions with a specific biological target and to trigger
(or block) its biological response”.** Notably, three-point
(feature) pharmacophores have been extensively used to
rationalize structure—activity relationships,? to control the
design of compound libraries,?® and to find novel ligands.?’
Since a single compound may be described by several three-
point pharmacophores, automated description of all possible
three-point pharmacophores can be encoded into a pharma-
cophore fingerprint in which every possible triplet is binned
according to interfeature distances.”® Determining how many
bin counts are shared by two compounds is thus a direct
measure of their similarity. Four-point pharmacophores were
shown to be even more accuracte but at the cost of an
increasing complexity of the fingerprint.”® Describing
protein—ligand binding sites by pharmacophore fingerprints
has already been described.”®?° In the later methods,
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pharmacophoric tuplets (triplets, quadruplets) are derived
from computed coordinates of probe atoms ideally interacting
with protein atoms. In FuzCav, tuplets are directly defined
from true protein atoms. A single atom (Ca) was chosen to
make the fingerprint insensitive to rotameric states of a single
chain, and the fingerprint was made of triplets and not
quadruplets to speed up calculation and pairwise comparison.
The cavity descriptor is a vector of 4833 integers, applicable
to any protein class, insensitive to variation of rotameric
states for binding-site-lining amino acids. It enables an
alignment-free exhaustive comparison of protein cavities at
an ultrahigh throughput (ca. 1000 comparisons/s) which is
compatible with the generation of full distance matrices and
the systematic screening of thousands of protein—ligand
binding sites for similarity to a query.

METHODS

Setting Up Data Sets of Protein Binding Sites. All
protein—ligand binding sites have been retrieved from the
2008 release of the sc-PDB database,® which currently
comprises 5952 entries. An sc-PDB binding site is defined
by any monomer (amino acid, ion, cofactor, prosthetic group)
presenting one heavy atom closer than 6.5 A from any heavy
atom of the pharmacological ligand. The binding site
definition is in line with docking algorithms®® using
protein—ligand bound coordinates to fix binding site bound-
aries. It notably prevents a too strong dependency of the
cavity definition on the size and pocket occupancy of the
bound ligand.

Five different protein data sets have been used throughout
this study.

Data set 1 is composed of 769 pairs of nonredundant
similar binding sites seeded with 769 pairs of nonredundant
dissimilar binding sites. The similar pairs have been selected
as follows. First, all entries from the sc-PDB database have
been clustered according to their UniProt name,’ leading to
911 clusters and 1204 singletons. Second, an all-against-all
comparison of all active sites within each cluster was realized
with the 3-D alignment tool SiteAlign®' to generate a distance
matrix. Algorithmic details of SiteAlign have been described
elsewhere.’! Briefly, eight topological and physicochemical
attributes are projected from the Co atom of cavity-lining
residues to an 80-triangle-discretized polyhedron placed at
the center of the binding site, thus defining a cavity
fingerprint of 640 integers. 3-D alignment is performed by
moving the sphere within the target binding site while
keeping the query sphere fixed. After each move, the distance
of the newly described cavity descriptor is compared to that
of the query, the best alignment being that minimizing the
distance between both cavity fingerprints. Two distances are
used in SiteAlign. The d1 distance is suited to measure global
similarities and is a sum of normalized distances between
the eight descriptors on all indexed triangles with non-null
values for either the query or the target. Previous bench-
marking studies suggest that a d1 distance of 0.60 is a good
threshold for discriminating similar from dissimilar binding
sites.’' The d2 distance is suited to measure local similarities
and is a sum of normalized distances between the eight
descriptors on all indexed triangles with non-null values for
both the query and the target. Previous benchmarking studies
suggest that a d2 distance of 0.20 is a good threshold for
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discriminating similar from dissimilar binding sites. In the
current study, two entries were randomly selected from each
of the 911 clusters if their binding sites were found similar
(d1 = 0.6 and d2 = 0.2). To avoid further processing issues,
only cofactor-free binding sites were selected and finally led
to 769 pairs of similar binding sites. The same number of
dissimilar binding sites was randomly selected from the initial
set of 911 clusters. Binding site pairs with an Enzyme
Commission (E.C.) annotation differing at the first level were
retrieved until the final number of 769 pairs was reached.

Data set 2 is composed of the entire sc-PDB archive’
categorized into five classes. The first group is composed of
271 serine endopeptidase entries sharing a trypsin-like fold
and a trypsin substrate cleavage specificity. The second group
is composed of 17 other serine endopeptidase entries
presenting a trypsin-like fold with a substrate cleavage
specificity different from that of trypsin. The third group is
composed of 11 serine endopeptidase entries with a subtilisin-
like fold. The fourth group is composed of 13 entries with
an oU/f hydrolase fold. The last class is composed of the 5640
remaining sc-PDB entries. Fold and cleavage specificities
were assigned from the CATH?? and CUTDB?* databases,
respectively. The 1aq7 sc-PDB entry (trypsin in complex with
the AEB ligand) was used as a reference to query this data
set.

Data set 3 is composed of the entire sc-PDB categorized
into four classes. The first class groups protein kinases (522
entries) according to the Enzyme Commission nomenclature
(E.C. number 2.7.10.—, 2.7.11.—, 2.7.12.—, 2.7.13.—, or
2.7.99.—). The second class is made up of other kinases (181
entries with a UniProt name ending in “kinase”). The third
class consists of 283 ATP- or ADP-binding sites which are
not kinases (the ligand PDB HET code is “ATP” or “ADP”).
The last class contains the remaining protein binding sites
(4966 entries). Three ATP-binding sites of different sizes
(34, 40, and 47 residues) from the human proto-oncogene
serine/threonine-protein kinase Pim-1 (sc-PDB entries lyi4,
3cy3, and lyhs) have been used as references to query this
data set.

Data set 4 was taken from a recent study from Aung et
al.** It is made up of 126 nonredundant PDB entries with
known adenine-binding motifs (34 entries, 18 folds) and 92
decoy proteins (21 different folds) of other functional types.

Data set 5 was retrieved from the previous work of Baroni
et al.'” on the FLAP methodology. It is composed of 23 ATP-
binding sites of protein kinases from 4 different subfamilies
(CDK2, GSK3p, LCK, P38).

FuzCav Fingerprint. The FuzCav fingerprint encodes a
protein—ligand binding site by a vector of 4833 integers
(Figure 1). Binding site residues are first listed and atomic
coordinates of their Co. atoms annotated by six pharmaco-
phoric properties of the corresponding amino acid (H-bond
donor, H-bond acceptor, positive ionizable, negative ioniz-
able, aromatic, aliphatic; Supporting Information Table S1).
Each integer of the vector registers the count of unique
pharmacophoric triplets (three properties and three related
distances) occurring at binned interfeature distances. The
distances between Co. atoms are currently discretized into
five intervals (0—4.8, 4.8—7.2, 7.2—9.5, 9.5—11.9, and
11.9—14.3 A). Please notice that the original first two
intervals (0—2.4 and 2.4—4.8 A) have been merged since
the first one is too narrow to describe any distance between
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Figure 1. Flowchart for defining FuzCav cavity fingerprints. All
possible pharmacophoric triplets (three points, three distances) are
computed from Co. atomic coordinates of cavity-lining residues.
Match counts for every possible case (triplet of pharmacophoric
features separated by five possible distance ranges) are stored in a
vector of 4833 integers.

two Co. atoms. Starting from the first interval, all triplet
combinations are counted and stored, until the last interval
is processed. To generate the shortest possible fingerprint,
redundant triplets (property redundancy, isosceles and equi-
lateral triangles) are removed. Last, the geometrical validity
of the pharmacophoric triplet is checked by applying the
triangle inequality rule stating that one distance cannot be
longer than the sum of the two other distances.

Metrics. The similarity between two binding sites is
computed as follows:

a

im(A,B) = ——«———
sim(A, B) min(nzA, nzB)

(D
where a is the number of common non-null counts in both
fingerprints and nzA and nzB are the numbers of non-null
counts in fingerprints A and B, respectively. This similarity
is symmetric and varies from O (not similar) to 1 (identical).
To establish whether two binding sites are similar (clas-
sification), the best threshold for the similarity measure
described above has been found using the maximum of the
F-measure value:

2(recall)(precision)
F-measure = — (2)
precision + recall
with
_ TP
recall = TP + FN 3)
and
... _ TP
precision = TP + TP 4)

where TP is the true positive rate, FN the false negative rate,
and FP the false positive rate. The best threshold is found
by the maximum of the F-measure curve when the threshold
varies from O to 1 with an increment of 0.01.

The accuracy of classifications was assessed by computing
the receiver-operating characteristic (ROC) curve®” plotting
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Table 1. Optimization of Interval Ranges and Numbers in the
FuzCav Descriptor

unrestricted distance range distance <14.3 A

intervals® ROC? number of intervals® ROC F-measure

1-7 0.95 2 0.95 0.89
1-6 0.96 3 0.97 0.92
1-5 0.96 4 0.96 0.91
1—4 0.97 5 0.98 0.94
1-3 0.96 59 0.99 0.95
1-2 0.95

1 0.50

“Key: interval 1, 0—7.6 A; interval 2, 7.6—10.1 A; interval 3,
10.1-12.3 A; interval 4, 12.3—14.3 A; interval 5, 14.3—16.8 A;
interval 6, 16.8—20.0 A; interval 7, >20.0 A. ® Area under the ROC
curve® for classifying data set 1 entries. ¢ Intervals are regularly
distributed over a maximum range of 14.3 A. “The first two
intervals (0—2.4 and 2.4—4.8 A) are merged.

the false positive rate versus the true positive rate. The 95%
confidence intervals were calculated with the MedCalc
software (MedCalc Software, 9030 Mariakerke, Belgium).

RESULTS AND DISCUSSION

Setting Up a Generic Cavity Fingerprint and a
Similarity Threshold for Similar Binding Sites. The herein
presented FuzCav cavity descriptor is inspired from a
previous study on ligand pharmacophoric fingerprints which
translates atomic coordinates of ligand atoms into all possible
arrangements of three-point or four-point pharmacophores.*®
To introduce a certain level of fuzziness into the FuzCav
descriptor, residue properties are matched to their corre-
sponding Ca atoms and inter-Co. distances used for phar-
macophore triplet definitions. Using Co. atoms to map
binding site properties on either graphs*® or vectors®'=’
presents the noticeable advantage to remove a strong
dependency on atomic coordinates®' (e.g., ligand-dependent
rotameric state of a side chain, slight domain rearrangements
up to 3 A) without altering the quality of the 3-D alignment
with respect to an all-atom match.*® Having defined a
representative data set of known similar protein—ligand
binding site pairs and known dissimilar binding site pairs
according to a previously reported distance metric specifically
suited for druggable protein—ligand binding sites,’! we
computed all distances between Ca atoms of binding site
residues and defined distance ranges for each interval to
homogenize the distribution of inter-Cat distances over seven
bins (Table 1). Using seven bins and three-point pharma-
cophores enables a clear distribution of similar and dissimilar
binding sites in data set 1 with a high ROC value (Table 1).
To optimize the number and range of distances used in the
descriptor, we first reduced systematically the number of bins
starting from the last one (interval 7, distance over 20.0 A)
until only the first distance range (interval 1, 0—7.6 A) was
encoded in the pharmacophoric triplet (Table 1). The best
compromise was achieved with four bins coding for inter-
Co. distances up to 14.3 A (ROC value 0.97, Table 1).
Having defined the maximum distance encoded in the
fingerprint, we next varied the number of bins within this
maximum distance by dividing the distance into two to five
bins. The best compromise between ROC and F-measure
values was obtained with five bins (Table 1, Figure 2A). It
enables a nearly perfect separation of similar and dissimilar
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Figure 2. Distinction of similar from dissimilar protein—ligand
binding site pairs (data set 1; see the Methods). (A) ROC plot (black
line) obtained by sorting the pairwise similarity of 1538 binding
sites (769 similar and 769 dissimilar pairs) by decreasing FuzCav
similarity score. True positives are any of the similar pairs, whereas
true negatives are any of the dissimilar pairs. The accuracy of
random picking is represented by a gray line. (B) Variation of
statistical parameters (F-measure, precision, recall) of a binary
classification model (similar/dissimilar binding sites) for increasing
similarity score thresholds.

B 10

binding sites in data set 1 (area under the ROC plot of 0.99)
and also allows precise determination of a similarity threshold
for similar binding sites by systematically plotting statistical
properties of classification models against increasing values
of similarity thresholds (Figure 2B). The optimal classifica-
tion was obtained with a similarity value of 0.16, which is
specific for the FuzCav descriptor and the metric used (see
the Methods) to measure distances between druggable
binding sites. Since the current similarity threshold of 0.16
has been determined by comparing two sets of very similar
and very dissimilar binding site pairs, it was next applied to
various data sets of druggable protein—ligand binding sites
to check its suitability for both screening and classification
purposes.

Functional Annotation of a Protein Family (Serine
Endopeptidases). Serine endopeptidases (data set 2) con-
stitute a standard benchmarking data set for fold-independent
protein alignment and comparison methods.'>!7-31-39741
Although they all share a unique catalytic triad (Ser, Asp,
His) with a single function, they exhibit different CATH
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Figure 3. FuzCav similarity of 5951 sc-PDB binding sites to that
of the laq7 entry (trypsin in complex with the ligand AEB). (A)
Entries are sorted by decreasing similarity scores and displayed
for scores above a similarity threshold of 0.16. (B) Variation of
statistical parameters (F-measure, precision, recall) of a binary
classification model (serine endopeptidases/other binding sites) for
increasing similarity score thresholds.

N\
AN
AN

folds®* and substrate cleavage specificities.*® In the current
validation, all 5952 sc-PDB binding sites were classified into
five groups (see the Methods) and fingerprinted as described
above and their distances to the laq7 binding site (trypsin
in complex with ligand AEB) evaluated. Figure 3 plots the
distribution of these five group members by decreasing
similarity to the laq7 binding site. The previously defined
similarity threshold of 0.16 was used to retrieve putative
“hits” (similar binding sites). A total of 157 out of 5951
entries pass the 0.16 similarity threshold. 75% of these entries
are serine endopeptidases of group 1 (trypsin fold, trypsin
substrate cleavage specificity) like the laq7 reference. The
top-ranked 66 sites are trypsin—inhibitor binding sites with
similarity scores to 1laq7 above 0.20. Five entries above the
0.16 similarity cutoff belong to group 2 (trypsin fold, other
substrate cleavage specificity), and two entries belong to
group 3 (subtilisin fold). Only 32 binding sites out of 5640
(0.56%) are false positive with similarity scores just above
the threshold (in the 0.16—0.17 range) and functionally
annotated as similar to the laq7 trypsin binding site (Figure
3A). False negatives are easy to explain from the nature of
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Table 2. ROC Plot Values for Classifying sc-PDB Entries in Data
Set 2

FuzCav BSAlign®
cleavage
group fold specificity AUC” 95% CI° AUC 95% CI
1 trypsin trypsin 0.90 0.89—091 091 0.90—0.92
2 trypsin other 0.78 0.77-0.79 0.67 0.66—0.68
3 subtilisin 0.65 0.64—0.66 0.67 0.66—0.68
4 o/f3 hydrolase 0.64 0.63—0.65 0.57 0.55—0.58
5 others 0.12  0.11-0.13 0.12 0.11-0.13

“Using default settings.** » AUC = area under the ROC curve.*®
¢ CI = confidence interval.

protein—ligand binding sites in serine endopeptidases in
which several subpockets accommodate side chains of
endogenous peptides to be cleaved. Depending on the sub-
pocket occupancy by various inhibitors, the corresponding
binding sites may only have a few residues in common (e.g.,
amino acids lining the oxyanion hole) with that of the laq7
reference.

Considering the entire data set, the classification according
to the FuzCav fingerprint is excellent for serine endopepti-
dases of group 1 (ROC score of 0.90, Table 2) and good for
entries of group 2 (ROC value of 0.78). Binding sites from
subtilisin-like (group 3) and o/ hydrolases (group 4) exhibit
FuzCav fingerprints different from that of trypsin. Other
binding sites of the sc-PDB are found quite different from
that of trypsin with a very weak area under the ROC curve
(0.12). Interestingly, plotting F-measure values of a binary
classification model (serine proteases vs others) against
increasing similarity thresholds indicates a clear peak at 0.16
(Figure 3B), thus validating the previously chosen cutoff.
The virtual screen was repeated with the recently described
BSAlign algorithm.>* BSAlign uses a graph representation
of proteins with Co. atoms defining property-annotated
vertices (solvent accessibility, physicochemical type, second-
ary structure type) and corresponding edges characterized
by a distance (between Ca. atoms) and an angle (between
Co—Cp vectors of the corresponding residue-defining ver-
tices). A subgraph isomorphism algorithm is used to detect
the maximum common subgraph between two binding sites,
and a similarity score is outputted depending on the number
of aligned residues and the corresponding rms deviations.
BSAlign was shown to be as efficient as SiteEngine, a state-
of-the art 3-D binding site alignment tool,"” with the
advantage of being 14 times faster (ca. 7 s/comparison).
When applied to classify the serine peptidase data set,
BSAlign was found as good as FuzCav in detecting serine
peptidases of group 1 (ROC score of 0.91, Table 2), but was
clearly less accurate for group 2 members (trypsin fold and
cleavage specificity different from that of trypsin). For the
remaining three subgroups, very similar classification ac-
curacies were obtained (Table 2).

Comparing ATP-Binding Sites across the sc-PDB
Data Set. We next look at whether our generic cavity
descriptor is able to distinguish binding sites for a very
permissive ligand (ATP) known to bind to active sites
exhibiting quite different shapes.** All sc-PDB binding sites
were screened and ranked by decreasing similarity to the
ATP-binding site of the protein kinase Pim-1 (PDB entry
3cy3). As to be expected, ATP-binding sites of protein
kinases are statistically similar to each other but resemble
neither ATP-binding sites of other kinases nor other ATP-
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Table 3. ROC Plot Values for Classifying sc-PDB Entries in Data
Set 3
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Table 4. ROC” Plot Values for Classifying PDB Entries in Data
Set 4

FuzCav BSAlign ROC

group AUC* 95% CI” AUC* 95% CI” method AUC“ 95% CI”
protein kinases 0.89  0.88—0.90 053  0.52—0.54 BSAlign®* 0.57 0.48—0.66
other kinases 0.59 0.58—0.60 0.52 0.51-0.53 SiteAlign31 0.77 0.69—0.85
other ATP/ADP-binding sites 0.56 0.55—0.57 0.52 0.51-0.53 PocketMatch2® 0.85 0.77—0.91
others 023  0.22-024 052 0.51-0.53 FuzCav 0.84 0.76—0.90

a — 35 b — .
AUC= area under the ROC curve. CI= confidence interval. @ AUC = area under the ROC curveS *CI = confidence

A
0.40
: Protein kinases
v Other kinases
0.36 = Other ATP-binding sites
- = Others
0.32
>
=
-
® 0.28 4
E
175] 0.24
0.20
0.16 + ———— ——ry ———y
1 10 100 1000
Rank
B

1.0 T
——— F-measure|
1 —— Precision

4

WS

NEEY/A
~ O\

0.00 0.05 0.10 0.15 020 0.25 0.30 0.35 0.40
Similarity

Figure 4. FuzCav similarity of 5951 sc-PDB binding sites to that

of the 3cy3 entry (Pim-1 in complex with the ligand JNS). (A)

Entries are sorted by decreasing similarity scores and displayed

for scores above a similarity threshold of 0.16. (B) Variation of

statistical parameters (F-measure, precision, recall) of a binary

classification model (protein kinases/other binding sites) for increas-
ing similarity score thresholds.

binding sites (see the ROC values, Table 3). About 17% of
all sc-PDB binding sites (ca. 1000 entries) pass the 0.16
similarity threshold although the top 100 entries are almost
exclusively ATP-binding sites of protein kinases (Figure 4A).
The large hit list reflects both the number of protein kinases
in the sc-PDB data set (522 entries) and the abundance of
nucleotide-binding sites in the sc-PDB. False negatives at a
threshold of 0.16 are either peptide-binding sites in protein
kinases or larger binding sites for ATP-competitive inhibitors
(e.g., a typical Cam kinase II inhibitor binding site has 25
residues more than the Pim-1 inhibitor site) exhibiting a more
extended conformation than that of the reference-bound

interval.

ligand. Repeating the same screening with the BSAlign
algorithm did not allow separation of protein kinases from
other classes (Table 3). A reasonable explanation for the
observed BSAlign failure resides in the cavity composition
(15 residues within 5 A of the N5 ligand) being different
from that used in FuzCav (40 residues within 6.5 A from
the ligand). Since BSAlign scores the alignment on the
number of matched residues, having a small-sized cavity as
the reference may have penalized this method.

Since binding sites are defined from the bound ligand, the
conformation of the ligand (folded, extended) significantly
influences the cavity definition and thus the FuzCav finger-
print. To ascertain whether the virtual screen is relatively
independent of the reference cavity, the same virtual screen
was repeated by selecting other Pim-1 protein kinase entries
as a reference with a smaller (PDB entry lyi4, 34 residues)
or larger (PDB entry lyhs, 47 residues) active site. Fortu-
nately, it did not change ROC statistics for the four subgroups
of data set 3 (Supporting Information Table S2). A variation
of up to ca. 20 residues for the same binding site will not
dramatically influence the FuzCav fingerprint as long as the
cavity contains more than 10— 15 amino acids. Last, it should
be noticed that “DFG-in” and “DFG-out” binding site
conformations** could not be distinguished by the current
cavity descriptor since it focuses on Cot atoms only. As for
the serine peptidase data set, the selected threshold (0.16)
also corresponds to the best possible F-measure of a binary
classification model (protein kinase versus other targets,
Figure 4B), therefore validating the usage of a universal
cutoff for druggable protein—ligand binding sites.

Comparing Substructure-Binding Motifs. The fourth
data set was taken from previous studies'’** and focuses
on the difficult problem of finding local similarity among
binding sites for the adenine substructural motif (in ligands
such as ATP, ANP, FAD, NAD, etc.). In the data set, 34
adenine-binding proteins are seeded with 92 other proteins
and their binding sites compared to the ATP-binding site
in the latp PDB entry (cAMP-dependent protein kinase in
complex with ATP). The main criterion of evaluation in
previous studies was the number of adenine-binding pockets
among the 15 top-ranked binding sites.'”** Whereas other
algorithms (SiteEngine,'® SiteAlign,'® PocketMatch,?® and
BSAlign®?) retrieve 9—11 true hits, our alignment-free
descriptor is more accurate and selects 13 true adenine-
binding proteins among the 15 top-ranked entries. The ability
to distinguish, in a binary classification model, adenine-
binding pockets from other cavities is significantly higher
using the FuzCav descriptor than two 3-D alignment tools
(BSAlign,** SiteAlign®') on the same data set (Table 4,
Figure 5A). This observation suggests that a main reason
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Figure 5. Distinction of adenine-binding pockets from other binding
sites (data set 4; see the Methods). (A) ROC plot obtained by sorting
the similarity of 126 binding pockets (34 adenine-binding pockets
and 92 other binding sites) to the latp binding pocket by decreasing
similarity score for three 3-D comparison tools (BSAlign,*
SiteAlign,*' PocketMatch®’) and the herein presented FuzCav
method. Random picking is represented by a gray line. True
positives are any of the adenine-binding pockets, whereas true
negatives are any of the other 92 cavities. (B) Variation of statistical
FuzCav parameters (F-measure, precision, recall) for recovering
adenine-binding pockets for increasing similarity score thresholds.

for the lower accuracy of alignment-dependent tools is the
underestimation of similarity scores due to misalignment of
unrelated proteins. We therefore applied a recently described
alignment-free binding site comparison tool (PocketMatch)°
to the same data set. PocketMatch uses a frame-invariant
representation of binding sites as 90 lists of sorted distances
capturing both the shape and the physicochemical properties
of the cavity.? As to be expected for this peculiar data set,
PocketMatch performs equally to FuzCav in terms of ROC
score for classifying adenine-binding pockets from decoys
(area under the ROC curve of 0.85, Table 4). PocketMatch
is however still inferior to our method when enrichment in
true positives among the top-scoring entries is considered
(Figure 5A). This difference may be explained by the
different physicochemical properties used to annotate protein
Co atoms. PocketMatch uses a standard amino acid similarity
matrix to classify amino acids into five groups, whereas
FuzCav uses a finer representation based on pharmacophoric
properties. For example, Asp and Asn residues will be
differently annotated in FuzCav (Asp, H-bond acceptor and
negatively charged; Asn, H-bond acceptor and H-bond donor)
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than in PocketMatch (both residues being classified in the
same group, i.e., group 2%°).

Since many of the adenine-binding pockets in the current
data set do not fall into the category of druggable
protein—ligand binding sites,” it was interesting to check
whether the optimal similarity threshold value of 0.16,
previously derived from the analysis of similar druggable
pockets, could be transferred to the present data set. Plotting
statistical parameters of the classification (F-measure, recall,
precision) as a function of the similarity threshold clearly
shows an optimal value at 0.11 (Figure 5B), far below that
observed for druggable cavities. Although the cavity descrip-
tor has captured the relevant structural information, this
benchmark clearly demonstrates that the similarity threshold
score for classifying binding sites is not invariant and
depends on the physicochemical properties of cavities to
compare. Our experience with druggable protein—ligand
cavities (molecular weight of the ligand in the 250—700
range, 30—60 active-site-lining residues, protein-bound
ligand buried area above 70%) suggests that a similarity
cutoff of 0.16 is robust enough to be used in various scenarios
(classification, virtual screening).

All-against-All Comparison of sc-PDB Binding Sites.
To identify similar binding sites in the absence of amino
acid sequence similarities, an all-against-all comparison of
5952 sc-PDB binding sites was realized. Out of the 17 710 176
possible pairs, 55 100 (0.31%) have a similarity score above
0.16 and are thus potentially interesting. To avoid trivial
matches resulting from inaccurate biological annotations, we
only selected binding sites from proteins differing at the first
level of the E.C. classification and retrieved the top 32 pairs
with a similarity score higher than 0.225 (Table 5). Out of
these 32 pairs, 6 share very similar ligands as indicated by
their pairwise chemical similarity (Table 5), which thus
provides an immediate validation for the comparisons. In
most of the cases, no similarity between the corresponding
protein amino acid sequences could be inferred by either a
BLASTp** alignment or comparison of SCOP* families
(Table 5). Noteworthy, some similarity between adenosine-
binding patches could be observed in the 1x14—1jgh pair
although the corresponding ligands (NAD in 1x14, ANP in
1jqj) occupy pockets of different shapes and volumes. Due
to the discretization of distances between pharmacophoric
features in five intervals, local similarity between patches
of binding sites is better treated in FuzCav than in standard
3-D alignment tools which are more suited to detect global
similarity patterns. Since FuzCav scores the sum of similar
counts in all possible pharmacophoric triplet keys, an absence
of match for a few residues is not detrimental to the similarity
score. A total of 13 out of the 33 pairs exhibit a pairwise
similarity of their ligands higher than 0.5, which reflects the
detection of local similar patches in their cognate binding
sites. Whether the latter may cross-react with similar ligands
is difficult to predict and would necessitate experimental
validation. The ultrahigh-throughput comparison of cavities
(ca. 1000 pairwise measures/s on an Intel Pentium 3.4 GHz
processor) opens the door to the systematic comparison of
all druggable cavities in the PDB whether they are cocrys-
tallized with a ligand or not. The possibility to find remote
local similarities in binding site pairs should be useful for
the functional annotation of genomic structures in the absence
of known templates with globally similar cavities, a situation
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Table 5. Top 32 Ranked sc-PDB Binding Site Pairs Differing at the First Level of the E.C. Annotation?

BLASPp
PDB1” PDB2¢ Namel? (SCOP? fold) Name?2' (SCOP* fold) sim® Tc" E-value’ positives’

loyj 2pbj glutathione S-transferase (52832) prostaglandin E synthase 2 (52832) 0.25 1.00 0.007 37/75
1xov 2b35 Ply protein (53162) enoyl-[acyl-carrier-protein] reductase (51734) 0.24 0.01 0.20 23/47
1tvp 2hbl endoglucanase 5A (51350) exosome complex exonuclease (53066) 0.24 043 9.0 7/10
lod6 1hk8  phosphopantetheine adenylyltransferase (52373) ribonucleoside-triphosphate reductase (51977) 0.24  0.50 0.14 23/54
Ipzp Iw2d  metallo B-lactamase (56600) inositol-trisphosphate 3-kinase A (56103) 0.23 038 250 921
2cun 1fgx phosphoglycerate kinase (53747) a-lactalbumin (53447) 0.23 041 7.5 6/13
1dia 2veg methylenetetrahydrofolate dehydrogenase (53222) dihydropteroate synthase (51350) 0.23 0.62 0.18 12/18
1fds 1j4h estradiol 17p-dehydrogenase (51734) peptidyl-prolyl cis—trans isomerase A (54533) 023 0.22 1.4 8/13
2j4h 2ecp deoxycytidine triphosphate deaminase (51268) glycogen phosphorylase (53755) 023 046 1.1 7/8
Indc 1dia nucleoside diphosphate kinase (54861) methylenetetrahydrofolate dehydrogenase (53222) 0.23  0.49 1.2 20/47
1hiy 2j4h nucleoside diphosphate kinase (54861) deoxycytidine triphosphate deaminase (51268) 0.23 0.74 0.93 711
Ipzp 2jav metallo (-lactamase (56600) casein kinase I homologue 1 (56111) 0.23 041 8.1 11726
1qyx 1tsl estradiol 17p-dehydrogenase (51734) thymidylate synthase (55830) 0.23  0.30 0.44 31/83
2pvr lonz  casein kinase I homologue 1 (56111) tyrosine-protein phosphatase type 1 (52798) 023  0.39 4.6 10/22
2cun Ipgp  phosphoglycerate kinase (53747) 6-phosphogluconate dehydrogenase (51734) 023 0.85 0.50 12/17
1x3n 1pl6 propionate kinase (53066) sorbitol dehydrogenase (51734) 023 049 1.4 8/14
1d70 1hiy enoyl-[acyl-carrier-protein] reductase (51734) nucleoside diphosphate kinase (54861) 023 0.19 0.74 11/16
1tu7 1goy glutathione S-transferase (52832) ribonuclease (53932) 022 0.32 0.31 12/18
2b35 luoo  enoyl-[acyl-carrier-protein] reductase (51734) prolyl endopeptidase (54473) 022 0.11 200 6/8
2gss Inwl glutathione S-transferase (52832) tyrosine-protein phosphatase type 1 (52798) 022 027 1.3 6/8
1x14 1jgh NAD(P) transhydrogenase (52171) basic fibroblast growth factor receptor 1 (56111)  0.22  0.86 1.1 9/14
1hk8 1fkg ribonucleoside-triphosphate reductase (51997) peptidyl-prolyl cis—trans isomerase A (54533) 022 0.40 0.017 13721
le8m 1p9p  prolyl endopeptidase (54473) tRNA (guanine-N(1)-)-methyltransferase (75216)  0.22  0.53 7.8 8/14
luoq 2iaj prolyl endopeptidase (54473) reverse transcriptase/ribonuclease H (53066) 0.22  0.55 1.8 22/45
luoo 1kf0 prolyl endopeptidase (54473) phosphoglycerate kinase (53747) 022 0.2 5.4 30/74
le8n 1299  prolyl endopeptidase (54473) acetate kinase (53066) 022  0.56 1.1 36/86
2vqm 2iaj histone deacetylase 8 (52767) reverse transcriptase/ribonuclease H (53066) 022 0.51 2.8 11/19
2jav ldia casein kinase I homologue 1 (56111) methylenetetrahydrofolate dehydrogenase (53222) 0.22 0.44 0.12 14/29
3eng 1hrk endoglucanase 5A (51350) ferrochelatase (53799) 0.22 0.38 0.66 41/104
1fki 2b35 peptidyl-prolyl cis—trans isomerase A (54533) enoyl-[acyl-carrier-protein] reductase (51734) 022 0.18 0.82 17/42
2g2f 1j4h proto-oncogene tyrosine kinase Src (56111) peptidyl-prolyl cis—trans isomerase A (54533) 0.22 045 14 79
1x14 2o0lk NAD(P) transhydrogenase (52171) amino acid ABC transporter (52539) 0.22 085 7.6 6/9

“Pairs sharing a similar 3-D fold are displayed in italics. * PDB identifier of the first protein in the pair.  PDB identifier of the second
protein in the pair. “ Name of the first protein. ¢ SCOP** class number. / Name of the second protein. ¢ FuzCav similarity of the ligand-binding

sites. " Chemical similarity (Tanimoto coefficient) of the cocrystallized sc-PDB ligand, measured from MACCS public keys in Pipeline Pilot.

50

" BLASTp™* expectation value for sequence stretches producing a significant alignment.” Number of similar residues/total length of the alignment.

in which most 3-D alignment tools fail to find any local
similarity.*®

Alignment-Free versus Alignment-Dependent Binding
Site Comparisons. A major issue with most 3-D binding site
comparison tools is that they require first alignment of
structures before computation of a similarity score. An
incorrect alignment of two sites will dramatically underes-
timate the similarity score, as suggested by results previously
obtained when benchmarking different tools using data set
4 of adenine-binding pockets (Table 4, Figure 5).

To estimate the frequency of such an event, we systemati-
cally compared our alignment-free descriptor with that of
an alignment-dependent 3-D method (SiteAlign).*' Like the
FuzCav fingerprint, SiteAlign also maps pharmacophoric
properties to Ca atom coordinates; therefore, the influence
of the prior alignment on the similarity score can be directly
estimated. The previous 522 ATP-binding sites of protein
kinases from data set 3 were compared to the ATP-binding
site in Pim-1 kinase (PDB entry 3cy3) in both FuzCav and
SiteAlign. A total of 75% of the ATP-binding sites were
found similar to that of Pim-1 according to FuzCav (score
=0.16), whereas SiteAlign only finds some similarity (d2 <
0.20)*! in 48.5% of the comparisons. Plotting FuzCav versus
SiteAlign similarity scores permit four situations to be
distinguished (Figure 6A). In 42% of the comparisons, both
tools agree that the two sites are similar (lower right quarter
of the plot). In 18.4% of the cases, the two algorithms agree
that both sites are dissimilar (upper left quarter of the plot)
notably for screened binding sites of large dimension (over

60 residues, Figure 6A). In 33.1% of the comparisons,
SiteAlign fails to find any similarity whereas FuzCav does
(upper right quarter of the plot). These cases correspond to
SiteAlign misalignments underestimating the corresponding
similarity score. A typical example is found with the
comparison between 3cy3 (Pim-1 kinase bound to inhibitor
JN5) and 1uv5 (Gsk-3f bound to inhibitor BRW) binding
sites. The SiteAlign fit is not optimal with respect to the
sequence-based match of Ca atoms (Figure 6B) and thus
underestimates the SiteAlign similarity score. The opposite
situation (good SiteAlign score and bad FuzCav score) occurs
much less frequently (6.4% of the test cases, Figure 7) and
almost exclusively when one of the two binding site pairs
exhibits many more charged residues than the other (e.g.,
3cys vs 2jdr; Figure 6C). Since charged features are less
frequent in FuzCav, significant variations in their number
may lead to quite different pharmacophoric triplet counts.
Conversely, the SiteAlign d2 score registers similarity for
pairs of matched binding site residues and is thus insensitive
to extra residues missing a counterpart in one of the two
cavities to compare.

Sensitivity of the FuzCav Fingerprint to the Size of
the Binding Site. The FuzCav descriptor registers pharma-
cophoric triplets and is therefore dependent on the way
binding site residues are selected, notably the maximal
distance between a ligand and the corresponding cavity-lining
residues. In the current study, binding site residues are
selected according to a maximal distance threshold of 6.5 A
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Figure 6. (A) FuzCav versus SiteAlign®' similarity values of 521 ATP-binding sites of protein kinases to the ATP-binding site of human
Pim-1 kinase (3cy3 PDB entry). Similarity thresholds for similar binding sites are indicated for FuzCav and SiteAlign by dotted lines. Data
are colored according to the size of the binding site (number of residues, color ramp in the upper right part). (B) SiteAlign failure in
measuring the similarity between 3cy3 (cyan) and luv5 (red) binding sites. The SiteAlign alignment is proposed in the left panel. The
optimal sequence-based alignment is proposed in the right panel. (C) FuzCav failure in measuring the similarity between 3cy3 (white
sticks) and 2jdr (cyan sticks) binding sites. Black arrows indicate two positively charged residues not present in the 3cy3 reference.

to any ligand atom. To investigate the influence of the size
of the binding site (number of amino acids) on the variability
of the FuzCav descriptor, the biggest sc-PDB binding site
(2gmj entry) was iteratively trimmed residue by residue and
a FuzCav similarity matrix between all possible binding sites
was computed (Figure 7). The corresponding heat plot clearly
shows that the FuzCav similarity rapidly decreases for small-
sized binding sites (less than 10 residues). For a binding site
of 13 residues, similarity to much bigger sites (30 residues
more) can still be detected. For a binding site lined by at
least 20 amino acids (98.7% of all sc-PDB protein—ligand
binding sites),® the descriptor is fuzzy enough to recover
similarity with binding sites having up to 70 residues (Figure
8). The FuzCav descriptor is thus insensitive to the binding
site definition for a vast majority of druggable protein—ligand
binding sites.

Sensitivity of the FuzCav Fingerprint to Variations
of Atomic Coordinates. Existing 3-D alignment programs,
notably those using property-mapped molecular-surface-
based descriptors are notoriously sensitive to variations of
atomic coordinates of binding site residues.?' Since active
site comparison algorithms may be used to predict the

function of novel protein structures solved within structural
genomic consortium initiatives, it is important that compari-
son algorithms are still suited to infer a putative function
from a ligand-free protein structure (apo structure). To verify
this property with the herein presented tool, five different
proteins of known X-ray structure were selected in both
ligand-bound and ligand-free states. The proteins were
selected to mimick different conformational changes upon
ligand binding: (i) very modest conformational rearrangement
of the binding cavity upon ligand binding (estrogen-related
receptor y), (ii) disclosure of a subpocket (aldose reductase),
(iii) side chain motions at the target—inhibitor interface
(uracil DNA-glycosylase inhibitor), significant to large
motions (HIV-1 protease, cell division protein kinase 2,
glucokinase). Measuring the binding site similarity of apo
and holo forms of the six targets shows that FuzCav is quite
robust in detecting true similarity. In none of the cases does
the computed similarity fall below the 0.16 similarity
threshold score, despite quite significant motions in some
binding sites (Figure 8A). An illustrative example of FuzCav
tolerance to active site motions is given by human glucoki-
nase, which upon binding of its substrate (o-D-glucose)
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Figure 7. Similarity plot between truncated binding sites from the
2gmj entry. The native 2gmj binding site (92 residues) has been
iteratively trimmed residue by residue to generate a set of 91
truncated sites whose pairwise similarity was measured according
to the FuzCav descriptor. Similarities higher than 0.16 are colored
in black, and similarities lower than 0.16 are colored in white. The
size of the binding sites (number of residues) is indicated as upper
and lower left labels.

undergoes substantial conformational rearrangements of its
binding site (18 residues in total) which particularly affect a
stretch of four amino acids (Phe150—Pro153) that drift more
than 10 A away from their ligand-free coordinates to allow
substrate enclosure.*” Nevertheless, FuzCav still detects
strong similarities between ligand-free and ligand-bound
active sites (similarity of 0.287) because the 14 remaining
residues share similar coordinates (rmsd of 1.1 A). To
confirm this observed tolerance on six test cases, 2000
molecular dynamics snapshots of a protein—ligand binding
site were compared to the starting structure (Figure 8B,C).
Athough heavy atoms of binding site residues exhibit rms
deviations up to 3.5 A from the starting structure, the
corresponding FuzCav similarity score decreases to a value
(0.27) much above the acceptable threshold (0.16) for similar
sites.

Comparison of FuzCav with Other Binding Site Com-
parison Methods. Numerous site-matching methods have
been reported in the literature (for an exhaustive review see
ref 13). Comparing them to the herein presented method is
quite difficult for numerous reasons, among the most
important are (i) unavailability of the program, (ii) different
assumptions for definining a ligand binding site (e.g.,
automated vs ligand-based detection), (iii) use of very
different benchmarking data sets, (iv) prohibitive computation
costs (notably for high-throughput virtual screening of site
collections).

The suitability of FuzCav in a true virtual screening
exercise (querying a data set of ca. 6000 sites for similarity
to a single entry) could only be compared to that of BSAlign
(Tables 2 and 3). In both virtual functional annotations,
FuzCav performed equally to (serine endopeptidases test
case) or much better than (protein kinases test case) BSAlign.
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Figure 8. Sensitivity of FuzCav similarity scores to variations of
binding site coordinates. (A) FuzCav similarity versus the rms
deviations of the holo from the apo structure (active site only) of
six targets: uracil DNA-glycosylase inhibitor (UDGI; 36 residues,
pdb identifier 1udi vs lugi), cell division protein kinase 2 (CDK2;
36 residues, 1dm?2 vs 2jgz), HIV-1 protease (HIV-1p; 52 residues,
1gbs vs 1hhp), estrogen-related receptor y (ERRYy; 27 residues, 2zkc
vs 2zbs), aldose reductase (AR; 24 residues, lads vs 2nvd), and
glycokinase (GK; 18 residues, 1v4t vs 1v4s). The horizontal dotted
line represents the similarity threshold (0.16) used throughout this
study to discriminate similar from dissimilar protein—ligand binding
sites. (B) Rms deviations (A) from the input conformer of 2000
snapshots of active site heavy atoms generated by the molecular
dynamics (MD) simulation of the water-solvated glucagon type-1
receptor structure (homology model, unpublished data). (C) FuzCav
similarity score of the 2000 MD snapshots (active site residues only)
from the input structure.

Its performance was notably insensitive to the size of the
reference binding site. The processing of the smaller data
set 4 (126 entries) was possible for BSAlign, SiteAlign, and
PocketMatch thanks to its Web Interface (Table 4, Figure
5). PocketMatch and FuzCav were clearly the best two
methods for distinguishing 34 adenine-binding pockets from
92 decoys, as measured by the area under the ROC plot
(Table 4). A closer look at the early enrichment in true
positives (Figure 5) indicates a better capability of FuzCav
for placing true adenine-binding pockets among the best
scored cavities and thus to lower the false positive rate.

FuzCav was next compared to the full-atom-based FLAP
method,'® which relies on molecular interaction fields. On a
data set of 23 ATP-binding sites of protein kinases spanning
4 different subfamilies, a perfect discrimination of the binding
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Figure 9. Hierarchical clustering of 23 ATP-binding sites of 4
protein kinase subfamilies'® according to the FuzCav similarity
matrix. FuzCayv distances were computed as defined in the Methods.
A hierarchical clustering of the matrix was realized with the
Cluster3.0 program (Human Genome Center, Institute of Medical
Science, University of Tokyo) using an uncentered correlation as
the similarity metric and the complete linkage clustering method.
The tree is rendered with JavaTreeView (http://sourceforge.net/
projects/jtreeview/).
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sites is observed, as previously reported for the FLAP
method, but with a much simpler and faster approach (Figure
9).

Last, a data set of seven binding site pairs (three sharing
the same SCOP family, four belonging to different SCOP
families) was retrieved from the previous work of Yeturu et
al.,’° to which we added the difficult case of celecoxib-
binding pockets in cyclooxygenase-2 (COX-2) and carbonic
anhydrase II (CA-II). Cross-reactivity of celecoxib deriva-
tives with the latter two enzymes was reported by Weber et
al.? on the basis of shared chemical features of known COX-2
and CA-II inhibitors and could only be explained a posteriori
by the similarity of small-sized subpockets for a sulfonamide
and a trifluoromethyl group. It is thus an interesting test case
for checking the suitability of site comparison methods to
detect local similarities. Thanks to Web interfaces to several
programs (ProFunc,*® SitesBase,'® SuMo,*® SiteEngine,"’
PocketMatch?’) and the availability of some executables
(BSAlign,** SiteAlign®"), seven methods could be compared
to FuzCav in detecting site similarities for these eight pairs
(Table 6). These methods could be roughly classified into
four categories of increasing complexity. ProFunc determines
the best possible match between ligand-binding templates
consisting of amino acid triads. PocketMatch and FuzCav
converts the binding site coordinates into a frame-invariant
fingerprint as lists of either distances or pharmacophoric
triplets between Cot and/or Cf3 atoms. Pairwise similarity is
computed by counting a normalized sum of equivalent
elements. BSAlign and SiteAlign represent protein—ligand
binding sites by property-annotated Ca atoms and use either
a subgraph isomorphism algorithm or a systematic iterative
search for finding the largest common subgraph (BSAlign)
or the most similar fingerprints (SiteAlign). Last, SitesBases,
SuMo, and SiteEngine rely on a full atomic representation
of binding site residues by true atoms or representative points.
The best alignment is inferred by matching triplets of atoms/
points using either clique detection or geometric hashing
algorithms. The match is scored according to the number of
equivalent atoms/representative points. All methods usually
find some similarity among pairs of binding sites from

Table 6. Comparison of FuzCav to Other Binding Site Comparison Tools in Detecting Similarity among Difficult Binding Site Pairs

PDB1—Ligl® PDB2—Lig2® ProFunc®  SitesBase’ SuMo®  SiteEngine/  PocketMatch® BSAlign”  SiteAlign’  FuzCav’

speed order (1 measure) min s—min min min ms S min ms
Pairs of Proteins Belonging to the Same SCOP Family
1gjc—130 1v2q—ANH 229 29.38 89 32.56 50.17 31.77 0.03 0.19
2yaw—ONO 217 NA 40 X 52.29 31.51 0.02 0.18
lo3p—655 x* 54.80 NA/ 38.48 88.01 42.26 0.01 0.18
Pairs of Proteins Belonging to Different SCOP Families
lecm—TSA 4csm—TSA X 54.65 X X 55.56 X X 0.18
1m6z—HEC llga—HEM X X X X 63.85 X X X
1zid—ZID 2cig—IDG X NA NA X 56.01 X X X
1v07—HEM 1hbi—HEM X 46.81 X X 61.42 X 0.20 0.18
6cox—S58 log5—CEL X X X 33.14 X X X 0.16

“PDB1 = PDB identifier of protein 1, and Ligl = chemical identifier of ligand 1. © PDB2 = PDB identifier of protein 2, and Lig2 = chemical
identifier of ligand 2. “ ProFunc Site Steer score assessed online from the Web server http://www.ebi.ac.uk/thornton-srv/databases/profunc/index.html.
4 SitesBase score computed online from the Web server http://www.modelling.leeds.ac.uk/sb/. The reported score is the ratio between the Score and
the Max score expressed in percentage.'® ¢ SuMo score computed online from the server http:/www.sumo-pbil.ibcp.fi/  SiteEngine MatchScore(M)!”
computed online from the Web server http:/bioinfo3d.cs.tau.ac.il/SiteEngine/. ¢ PocketMatch PMScore?® computed online from the Web server
http://proline.physics.iisc.ernet.in/pocketmatch/. " BSAlign alignment score.®* ’SiteAlign d2 score.>' /FuzCav similarity score. “No detectable
similarity at a defined threshold (Profunc, E-value <1.00 x 1079, SitesBase, ratio >10; SuMo, SiteEngine, Matchscore(M) > 40; PocketMatch,
PMScore >=40; BSAlign, score >10; SiteAlign, d2 < 0.20; FuzCav, score =0.16). 'PDB entry not available on the Web server.
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proteins sharing the same fold (Table 6). For pairs of sites
binding the same ligand in the absence of any fold similarity
(second section of Table 6), the lowest (ProFunc) as well as
the highest (SuMo, SiteEngine, SitesBase) resolution methods
meet significant difficulties to recover pairwise similarities.
Lower resolution methods focusing on protein Ca atoms only
(BSAlign, SlteAlign) to align protein coordinates also fail
in almost all examples. Interestingly, both frame-invariant
comparison methods (PocketMatch, FuzCav) present the best
compromise between the complexity of the binding site
descriptor and the success rate. PocketMatch outperforms
FuzCav for large binding site pairs for which the occurrence
of charged residues varies (e.g., Im6z vs llga, 1zid vs 2cig),
thus affecting the pharmacophoric triplet distribution. Im-
portantly, only FuzCav and SiteEngine manage to find some
similarity between 6cox and log5 protein—ligand binding
sites, thus suggesting that they may be used to detect
subpocket similarities, a very important feature for annotating
proteins with novel folds or no representative templates.*®
Additional benchmarks on common data sets are clearly
needed to unambiguously compare site-matching programs.
However, the current analysis shows that the FuzCav method
is robust, relatively insensitive to the binding site definition,
and fuzzy enough to be applied to ligand-bound as well as
ligand-free protein structures.

A clear drawback of the current method is the lack of
interpretability of outputted results. It is currently not possible
to explain why two cavity fingerprints are similar and which
pairs of residues account for the observed similarity. If the
user is interested in aligning two sites, FuzCav may be first
used as a first filter to check a putative similarity and then
coupled to an independent 3-D alignment tool if the score is
above any user-defined similarity threshold. A second limit
lies in the different distribution of charged residues observed
at the rim of some large but similar binding pockets which
directly affect the distribution of pharmacophoric triplets.
Since charged residues are less frequent than neutral ones,
the resulting fingerprints will be significantly different and
the corresponding binding site pairs more difficult to recover.

CONCLUSIONS

We herewith present a generic cavity fingerprint (FuzCav)
to compare protein—ligand binding sites. In contrast to most
existing tools, the present method does not require a prior
3-D structural alignment of proteins to compare and thus
achieves an incomparable pace to quantify pairwise similari-
ties. It is applicable to any druggable cavity from any protein
class. The fingerprint was designed to incorporate a certain
level of fuzziness by assigning pharmacophoric properties
to Ca atoms of cavity-lining residues. It is insensitive to the
binding site definition. Moderate ligand-induced fit notably
by variation of side chain rotameric states is therefore easily
handled in the present descriptor. By discretizing distances
between pharmacophoric features into five bins and using a
sum of identical counts in the pharmacophore key, the
FuzCav descriptor is suited to detect either local or global
similarities between protein cavities. It is robust enough to
define a single similarity threshold above which two drug-
gable binding sites can be considered as similar. Adaptation
to nondruggable cavities is still possible at the condition that
the similarity threshold is customized from a suitable data
set.

WEILL AND ROGNAN

The present descriptor could be used easily to screen a
database of binding sites for similarity to any druggable
cavity, notably those arising from novel genomic structures,
for guiding their functional annotation and identifying their
first ligands. Since the cavity descriptor is generic, it can
also be associated with ligand descriptors in fixed-sized
protein—ligand fingerprints*’ to mine a broad and complex
chemogenomic space.
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