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Abstract: This review will focus on the construction, refinement, and validation of G Protein-coupled receptor models for
the purpose of structure-based virtual screening. Practical tips and tricks derived from concrete modeling and virtual
screening exercises to overcome the problems and pitfalls associated with the different steps of the receptor modeling
workflow will be presented. These examples will not only include rhodopsin-like (class A), but also secretine-like (class
B), and glutamate-like (class C) receptors. In addition, the review will present a careful comparative analysis of current
crystal structures and their implication on homology modeling. The following themes will be discussed: i) the use of
experimental anchors in guiding the modeling procedure; ii) amino acid sequence alignments; iii) ligand binding mode
accommodation and binding cavity expansion; iv) proline-induced kinks in transmembrane helices; v) binding mode
prediction and virtual screening by receptor-ligand interaction fingerprint scoring; vi) extracellular loop modeling; vii)
virtual filtering schemes. Finally, an overview of several successful structure-based screening shows that receptor models,
despite structural inaccuracies, can be efficiently used to find novel ligands.
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1. THE USE OF RECEPTOR MODELS IN
STRUCTURE-BASED VIRTUAL SCREENING FOR
GPCR LIGANDS

G-protein-coupled receptors (GPCRs) constitute a large
family of heterogeneous membrane receptors characterized
by a typical heptahelical membrane-spanning fold usually
described as a seven-transmembrane (TM) domain [1, 2]. A
striking feature of this protein family is the tremendous
chemical diversity of possible ligands including light, small
molecular-weight ions (e.g. glutamate, Ca®"), biogenic
amines (e.g. dopamine, serotonin), nucleosides and nucleo-
tides (e.g. adenosine, adenosine triphosphate), peptide and
protein hormones (e.g. chemokines, glucagon), lipids and
eicosanoids (e.g. sphingolipids, prostaglandins) [3].
Activation of GPCRs upon binding of the above-mentioned
ligands induces a conformational change of the receptor,
thereby triggering a specific interaction with intracellular G
proteins and subsequent activation/ inhibition of secondary
messengers [4]. Because of the ubiquitous distribution of
GPCRs at the surface of many cells, these receptors are
regulating a wide array of physiological and pathological
processes. As a consequence, GPCRs are particularly
attractive targets for therapeutical intervention. Hence, about
30% of top-selling drugs modulate the activity of this family
of receptors [3]. Up to now, few GPCRs (ca. 40) have been
targeted by existing drugs. Analyzing human genomic
sequences suggests the existence of about 400 nonolfactory
GPCRs [5] and opens a new avenue for drug discovery,
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especially with respect to the 100 orphan receptors for which
even the endogenous ligand still has not been characterized
[6].

Knowledge of the three-dimensional structure of GPCRs
can provide important insights into receptor function and
receptor-ligand interactions, and can be used for the disco-
very of new drugs. So far structural modeling of GPCRs has
been limited to either ab initio models [7, 8] or bovine
rhodopsin (bRho)-based [9] homology models. Recently,
crystal structures of squid rhodopsin, the beta adrenergic
receptors type 1 (ADRBL1) and 2 (ADRB?2), the A2A adeno-
sine receptor (AA2AR), and the ligand-free opsin (Ops*)
were solved [10-16]. Although most of these crystal struc-
tures are relatively homologous in the trans-membrane (TM)
binding cavity, the differences might however be large
enough to influence the outcome of structure-based virtual
screening [17]. In fact, the binding mode of the antagonist
co-crystallized with AA2AR [12] deviates dramatically from
previous computer models [18, 19], while ligand binding
modes in earlier ADRB2 models (e.g., [20, 21]) are
generally in agreement with the inverse agonist and
antagonist-bound crystal structures of this receptor [10, 11].
Furthermore the structural divergence between the GPCR
crystal structures appears to be much larger in the intra-
cellular regions as well as the extra-cellular loop regions of
the receptors [10, 12]. Comparing the inactive bRho to the
active Ops* structure suggests ligand-induced conforma-
tional changes [13, 14], while comparison of different
ligand-bound ADRB1 and ADRB?2 structures show small
subtle rotamer changes to optimize receptor-ligand interac-
tions [11, 16]. Careful and critical receptor modelling
strategies, guided and validated by experimental data, are
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therefore still needed to construct receptor models which can
be used for structure-based virtual screening.

It has been stated before that the ground state of ADRB2
and bRho crystal structures are only suitable for discovering
inverse agonists and antagonists [20, 22]. Recent virtual
screening studies have shown however, that agonists can be
retrieved by using receptor models based on inactive crystal
structure templates [23-27], and, vice versa, antagonists have
been found using agonist-biased receptor models [24, 28,
29]. Moreover, a recent study showed that it is even feasible
to model early intermediate states in agonist binding, based
on the inverse agonist bound crystal structure of ADRB2
[30]. Thus the appearance of more GPCR crystal structures
can help to push computer-aided drug design studies towards
more challenging predictions.

Although insights into the molecular mechanisms of
ligand-induced receptor activation derived from compu-
tational studies [31-33] can be valuable for the design of
specific ligand types (i.e. agonist vs. antagonists), the current
paper will focus on the use of three-dimensional receptor
models for predicting ligand binding, and enabling structure-
based virtual screening studies in particular.

2. A MODELING WORKFLOW FOR TAILOR-MADE
GPCR MODELS

Considering the apparent flexibility of GPCRs and the
diversity in ligand types, binding pockets, and binding
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modes, GPCR models should be tailor-made, using all
possible experimental data to guide their construction and
validation along different modelling steps. Furthermore it
should be acknowledged that the quality and applicability of
GPCR models strongly depends on the amount of experi-
mental data available to construct and validate them, more
than on the exact modelling programs and techniques via
which they are constructed. In Fig. (1) a typical GPCR
modeling workflow is presented to construct GPCR receptor
models.

In short, the GPCR modeling workflow follows seven
steps: 1) Construction of the initial receptor model,
consisting of the 7 transmembrane (TM) helices only, after
identification of the TM helices (template-independent de
novo modeling), amino acid sequence alignment between
target and template receptors (homology modeling), and by
rotation/de novo modeling of certain TM helices with
putative alternative helical kinks; 2) Construction of a
preliminary TM-ligand complex; 3) Energy minimization
(EM) of the TM-ligand complex; 4) Molecular dynamics
(MD) simulation refinement of the receptor-ligand complex;
5) Modeling the loops connecting the TM helices; 6)
Selection and refinement of the full receptor-ligand com-
plex; 7) Validation of the full receptor-ligand complex.

Depending on the availability of experimental data and
the purpose of the receptor model, alternative workflows can
be followed. For example, if there are no experimental data
available to guide the construction of extracellular loops, it is
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Fig. (1). GPCR modeling workflow along the different steps (boxed numbers) described in the text.
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advised to omit step 5 (see section 4.5). At the moment that a
receptor model has been thoroughly evaluated and validated,
it can serve as modeling template for constructing homo-
logous targets [34]. For example, a validated cotico-tropin-
releasing factor type 1 receptor (CRFR1) model is likely to
be a better template to model future secretin-like (class B)
GPCR models than less homologous bRho, AA2AR, or
ADRB2 structure tem-plates. The selection of a proper
template at the start of the modeling process (step 1 in Fig
(1)) can be crucial and should be done with care, based on a
preliminary analysis of the ligand binding pocket topo-
graphy and knowledge of the structural differences between
the different available modeling templates. Therefore a
thorough analysis of the different GPCR crystal structures
will be presented in the following section 3. The different
GPCR modeling steps will then be described in more details
in section 4.

3. Implications of GPCR Crystal Structures on GPCR
Homology Modeling

With the exception of de novo GPCR models [7, 8]
which are template-independent, most GPCR models have
been derived from an experimental structural template (or
from another receptor model initially derived from an
experimental template). For many years, the crystal struc-
ture of dark-state retinal-bound bovine rhodopsin (bRho) [9]
has served as a template to model GPCRs. In the past years,
other ligand-bound bRho structures of higher resolution[35,
36] as well as different photointermediates [37, 38] of
generally lower resolution have appeared. These structures
only showed significant structural changes in the intra-
cellular loops compared to the first bRho structure. The
recently solved structure of the squid rhodopsin, on the
contrary shows significant changes in the TM backbone
comJ)ared to bRho, especially in TM2, as the result of a
G**XP*®" induced kink [15] (residues are numbered
according to the Ballesteros-Weinstein nomenclature [39]).
This motif is not present, however, in other non-olfactive
human GPCRs. The large structural differences between the
inactive bovine rhodopsin structures and the recently
published ligand-free bovine opsin structures are primarily
located in the intracellular regions, but are linked to
structural rearrangements in the extracellular TM binding
pocket as well [13, 14]. Around the retinal binding pocket,
inward movements (towards the retinal binding pocket) of
TM helices 2, 6, and 7 and an outward movement of TM3
(away from the binding pocket) are observed in opsin
compared to rhodopsin [13, 14]. Only recently were the first
human GPCRs crystal-lized with a diffusible ligand
(ADRB1[16], ADRB2[10, 11], AA2A [12]). Although the
relative orientations of some TM helices differ from bRho
(Fig. (2A)), the main structural differences around the ligand
binding pocket stem from the extracellular loops (ecls),
especially ecl2 (Fig. (2B,C)). Furthermore, the exact location
of the ligand binding pocket varies between the bRho,
ADRB1/ADRB2, and AA2AR crystal structures (Fig. (3)).
Site-directed mutagenesis mapping of the ligand binding
cavities of many other receptors also suggest a wide variety
of binding site locations among GPCRs, and often also
depending on the ligand itself (i.e. agonists vs. antagonists),
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although there seems to be at least a partial overlap between
these sites (Fig. (3)).

Fig. (2) shows the structural divergence between GPCR
crystal structures. In Fig (2A), the crystal structures are
aligned on the C alpha atoms of 33 residues proposed to
represent a consensus GPCR binding cavity [40], but for the
bRho-ADRB2 alignment the positions of TM1 are not taken
into account because of the large divergence in that region
[10]. Compared to bRho, TM1 of ADRB2 and TM2 and 3 of
AA2AR are highly divergent, while TM 6 and 7 of ADRB2
and TM6 of AA2AR are similar. TM2 and 4 of ADRB2 and
TM1, 4, and 7 of AA2AR are moderately constant. TM 3
and 5 of ADRB2 and TM 5 of AA2AR are moderately
divergent. The TM helices in bRho and all other GPCR
crystal structures are far from ideal helices. Most of these
deformations are induced by unusual proline-induced kinks
stabilized by adjacent glycine and/or threonine/serine resi-
dues, resulting in some cases in local openings or closures of
specific helical turns [41-43].

Thus, while the overall fold of most helices in the
published GPCR crystal structures is relatively conserved
(suggesting structural mimicry among GPCRs [43]) there are
striking differences in some helical bends (described above)
and relative orientations of some helices (Fig. (2)). These
differences can often be explained by specific sequence
motifs (P/G/T/S) and/or TM-TM interactions (e.g., the
conserved H-bond between N**° side chain and the backbone
carbonyl oxygen of residue 7.46) inducing and/or stabilizing
kinks in the TM helices. Interestingly, different sequence
motifs can induce the same kink (e.g., GZ*°G**'XT#*T#% in
bRho and P**°XG*® in ADRB2) and in some cases, the
orientation of TM helices seems to be affected by the
conformation of extracellular loops as well. The top of TM3
in AA2AR, for example, bends further towards TM4 (Fig.
(2A)) by the two disulfide bridges between TM3 and ecl2
(Fig. (2B)). In other cases, the fold around the TM cavity
(i.e., the positions facing the ligand binding pocket) is often
conserved despite differences in helical kinks (e.g. TM7).
Although this makes the prediction of TM kinks based only
on sequence motifs difficult [41], it should be stressed that
the selection of the proper modeling template and/or model-
ing of alternative TM kinks can also be guided by experi-
mental data supporting and/or excluding the involvement of
specific residues at the top of the helix.

Furthermore, the helical bundle of GPCRs is believed to
be rather flexible, and it has been proposed that receptor
activation is accompanied by rotation and/or translation of
certain TM helices (notably TM6) to facilitate binding of the
G-protein [32, 44]. In very recently solved crystal structures
of opsin in the activated state (Ops*) [13, 14], of which one
is bound to a peptide segment of the Ga-protein [14], several
conformational changes in the TM helices are obser-ved
compared to the bRho ground-state crystal structure [9]. The
largest structural changes are located at the intracellular side
where the G-protein binds, breaks the ionic lock [9] between
R and E°* and relocate the intracellular regions of
especially TM5 and TM6, as well as TM3 and TM7. This
movement is however linked to structural rearrangements in
the TM cavity at the extracellular side: i) TM5 and TM6
move down (towards the intracellular side) and towards each
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Fig. (2). Structural divergence between GPCR crystal structures. A) Comparison of the 7TM-bundle of bRho (light grey cylinders) [36] with
that of ADRB2 (top, dark grey cylinders) [10] and AA2AR (down, dark grey cylinders) [12] . Ligands (retinal in bRho (light grey carbon
atoms), carazolol in ADRB2 (dark grey), and ZM241385 in AA2AR (dark grey) are depicted by ball-and-sticks. B) Comparison of the
extracellular loops 2 (ecl2) of bRho (light grey), ADRB2 (top, dark grey), and AA2AR (down, dark grey). Ligands are presented as in panel
A. Disulfide forming cysteine residues as well as residues at position 45.52 are depicted by ball-and-sticks. C) Comparison of the ecl2 amino
acid sequences of bRho, ADRB2, and AA2AR, along with their secondary structure (beta strands depicted by arrows, helical segments
depicted by bars), disulfide bridges (grey lines), and residues involved in receptor-ligand contacts (underlined in bold). D) The number of
ecl2 residues downstream from C45.50 plotted against the number of residues upstream from C45.50 for 325 GPCRs containing the

conserved C3.25-C45.50 disulfide link [46].

other, away from TM3 ii) the highly kinked TM7 helix
bends towards TM2 and the relocated TM6; iii) the top of
TM2 kinks towards TM3 which moves away from TM7. It
has to be investigated, however, whether the opsin structure
is a more suitable template for modeling the agonist bound
state of other receptors. The CB to Cp distances between
positions 3.32 and 5.43, and between 3.32 and 6.52, residues
experimentally found to be involved in agonist binding in
ADRB?2 [45], are significantly longer in the Ops* than in the
ADRB?2 crystal structure (6 and 4 A longer, respectively),
making Ops* probably an unsuitable template to construct an
agonist-bound ADRB2 model. Consideration of the relative
orientation and helical kinks, determining the position and
direction of residues into (or out of) the ligand binding
pocket, in potential modeling templates is therefore a very
important first step in the GPCR modeling process. And in
cases where experimental data suggest that the TM confor-
mation of the target is not captured by any of the available
templates, it can be necessary to model this conformation
(step 1 in the modeling scheme in Fig. (1)), as will be
discussed in section 4.3.

Fig. (2B) shows how the second extracellular loop of
bRho is folded deep into the TM binding pocket forming a 8

sheet between B strands upstream and downstream from
C**0 (see [46] for sequence-independent numbering of ecl2
residues). The ecl2s of ADRB2 and AA2AR are located
more towards the extracellular side of the helical bundle,
containing a long helix upstream from C45.50, and a
strand (forming a p sheet with ecll) upstream and a short
helix downstream from C45.50, respectively. All three
structures contain a conserved disulfide bridge between
C45.50 in ecl2 and C3.25 in TM3. An additional disulfide
bridge within ecl2 is present in ADRB2, while the ecl2 of
AA2AR forms two additional disulfide bridges with ecll.
Analysis of the ecl2 of 325 GPCRs containing the conserved
C3.25-C45.50 disulfide link shows that the upstream ecl2
loop length (showing an optimum at 12-13 residues) is less
variable then the downstream ecl2 loop length (showing
optimum between 3 and 12 residues) [46]. Compared to
bRho, many GPCRs have approximately the same number of
residues upstream and downstream, but other GPCRs have a
somewhat shorter or longer (e.g. ADRB2, AA2AR)
upstream ecl2 loop, and/or significantly shorter (ADRB2 and
AA2AR) or longer downstream ecl2 loop. Long upstream
combination with short downstream ecl2 loops, like ADRB2
and AA2R, are however relatively rare. Although bRho
seems to be a relatively suitable modeling template for
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modeling the upstream ecl2 segment, construction of ecl2
however should be done with care and guided by receptor-
specific experimental data, rather than carried out in a high-
throughput fashion and derived directly from the bRho
crystal structure [46]. Moreover, loop-less TM models of
GPCR receptors can be suitable targets for virtual screening
as well ([8, 46-50]. The implication of extracellular loop
modeling (step 5 in Fig. (1)) on structure-based virtual
screening will be discussed in more detail in section 4.5.

Experimental data such as site-directed mutagenesis
(SDM) and ligand structure-activity relationships (SAR) data
give insights into which residues in the receptor and which
chemical groups in the ligand are involved in receptor-ligand
binding. This information can be used to propose receptor-
ligand binding modes and to construct in silico models of
receptor-ligand complexes. In this way, the binding modes of
inverse agonists and antagonists hypothesized in earlier
ADRB2 homology models based on bRho generally
resemble the binding orientations of carazolol and timolol in
the ADRB2 crystal structures [20, 21, 51]. The binding mode
of ZM241385 in the recently solved AA2AR crystal
structure [12], however, deviates significantly from the
antagonist binding poses proposed in molecular modeling
studies [18, 19]. The apparent success in ADRB2 and failure
in AA2AR modeling is mainly the result of differences in the
character and location of experimental anchors to construct
receptor-ligand interaction hypotheses.

ADRB2 ligands share an essential positively charged
amine as well as an aromatic ring separated by ca. 5 (in most
partial/full agonists) to 7 A (in most inverse agonists/
antagonists). This pharmacophore fits the binding pocket of
the high-resolution ADRB2 crystal structure [10], in which
both polar interactions (to D*¥, $># N”3%) and edge-to-face
n stacking (mainly to F®%?) contribute to strong directional
constraints for receptor recognition. The binding mode of
ADRB2-bound carazolol is in line with earlier site-directed
mutagenesis studies, supporting the involvement of D33 [52,
53], $>* [54], and N"* [55] in binding of both antagonist
and agonists. Mutation of residues $>*3, 546, N®%° and Y’
affects partial/full agonist binding [56-58]. In the case of
ADRB?2, three polar residues located in three different TM
helices, namely D**?, S and N"*°, have been shown to be
involved antagonist-ADRB2 interactions by SDM. The
spatial distribution of these critical residues in a bRho-based
ADRB2 homology model is quite close to that in the X-ray
structure. Ligand-receptor binding modes are therefore
relatively straightforward to predict by many docking tools
(Fig. (3)).

Conversely, the recently described X-ray structure of
AA2A in complex with the antagonist ZM241385 [12] was
almost impossible to predict. Previous SDM studies had
identified several polar anchoring residues, including N®*, to
be important for agonists and xanthine antagonist bind-ing
[59, 60]. Mutation of Q**" had small but significant effects
on binding of agonists, xanthine antagonists, and antagonists
containing an adenine ring (like ZM241385) [60]. Further-
more, mutation of ecl2 loop residues differently affected
agonist and antagonist recognition [61]. Modeling the ecl2 of
AA2AR based from bRho is however quite challenging
because of the large difference in number of downstream and
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upstream residues (Fig. (2C)). In fact, only one of these
negatively charged residues (E**%) interacts with ZM241385
in the AA2AR crystal structure. The plausible H-bond
interaction hypo-thesis between the exocyclic amine and
N®% observed in the crystal structure is supported by the
SDM data and was therefore proposed in many AA2AR
receptor models as well [62]. Understandably, computational
chemists have been tempted to match the other numerous
polar H-bond acceptor and donor atoms in the ligand with H-
bond interaction partners in the receptor, but surprisingly,
three polar interactions with the ligand are mediated via
water molecules. The possible role of conserved internal
water molecules in structure and function of GPCRs has
been hypothesized [63], but this is the first report of water-
mediated receptor-ligand interactions. Furthermore, V3.32,
F5.43, and H7.43, which are indicated by SDM data to be
involved in antagonist binding [60, 64], are in fact not in
close contact with ZM241385 in the AA2AR crystal struc-
ture. The use of these experimental anchors to guide the
construction of a ZM241385-AA2AR complex would
therefore have been misleading. In conclusion, the lack of
directionality in receptor-ligand interactions for guiding the
modeling of the receptor-ligand complex explains the
difficulty of modeling AA2AR-anta-gonist interactions
compared to ADRB2-ligand interactions.

4. TIPS AND TRICKS TO CUSTOMIZE LIGAND-
BIASED GPCR MODELS

One of the most important aspects of any GPCR
modeling protocol is the incorporation of as much experi-
mental data available to guide the construction of the
receptor model at every step and as early in the modeling
process as possible. Information on the involvement of
certain residues in ligand recognition [65], the identifi-cation
of essential chemical groups for ligand for binding, and the
synthesis of these data into a preliminary ligand binding
mode hypothesis can be used to: i) make rational decisions
regarding the selection of the optimal modeling template and
alignment of the target and template amino acid sequences
(section 4.1); ii) refine the receptor and shape the ligand
binding pocket (section 4.2); iii) model alternative helical
kinks and orientations (section 4.3); iv) select and score
receptor-ligand docking poses (section 4.4); v) model
extracellular loops (section 4.5); vi) set up smart virtual
screening strategies (section 4.6).

4.1. Rationalizing Sequence Alignments

The first steps in GPCR modeling are the identification
of the transmembrane helices and amino acid sequence
alignment between target and crystal structure (or refined
receptor model) template(s) (step 1 in Fig. (1)). Several
algorithms have been developed to predict the rough location
of the 7 TM helices [66]. While de novo GPCR modeling
methods, like Predict [8] and Membstruck [7], do not require
target to template amino acid sequence alignments as input,
homology modeling does require such an alignment. Despite
the relatively low sequence identity between the TM
domains of rhodopsin-like (class A) GPCRs [67], there are
several GPCR family-specific patterns and motifs [68] which
facilitate their alignment [20]. The Ballesteros-Weinstein
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Fig. (3). Diversity of GPCR-ligand binding pocket and binding modes in six different GPCRs, (bRho, ADRB2, AA2AR, sphingosine 1-
phosphate receptor 1 (S1PR1), metabotropic glutamate receptor 5 (GRMD5), and corticotropin-releasing factor receptor 1 (CRFR1). Chemical
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numbering scheme [39] is based on the presence of several
highly conserved residues among class A GPCRs: N**° in
TM 1 (1.30-1.59), D**® in TM2 (2.38-2.67), R*** in TM3
(3.22-3.54), W*** in TM4 (4.40-4.62), P>** in TM5 (5.35-
5.60), P>’ in TM6 (6.30-6.55), and P"*®in TM7 (7.33-7.53).
Previous sequence analysis and molecular modeling that
incorporated experi-mental data such as creation of metal
binding sites, disulfide cross-linking, and double revertant
mutations, were successful in predicting helix ends and
protein-protein interactions in bRho, which are also
predicted for other class A GPCRs [43]. The GPCR crystal
structures of bRho, ADRB2, and AA2AR share most of the
positions facing the TM binding pocket [9, 10, 12], and most
of these positions have also been identified to belong to the
binding cavity by the substituted-cysteine accessibility
method (SCAM) [43] or other SDM studies [40]. In fact,
sequence similarity in TM cavity alignments can often be
matched to conserved moieties in the ligands of these
receptors [40, 69], and therefore can be used as a rational
modeling template selection criterion (step 1 in Fig. (1))
instead of the overall TM sequence similarity.

While the alignment of most TM helices of class A
GPCRs to the currently available GPCR crystal structure
templates seems straightforward, there is still some debate
on their alignment to class B and class C GPCRs. We have
worked on class B as well as class C receptors and noticed
that for some of the TM helices of these receptors alternative
alignments to bRho have been reported [34, 70-78]. Our
alignments and the experimental anchors used to support
them are presented in Fig. (4). The alignment of class B
GPCRs on the left in Fig (4A) is in agreement with inter-
helical interactions displayed in the CRFR1 model on the
right: i) a putative R***-Q"* H-bond proposed for the
parathyroid type 1 receptor (PTHR1) based on correlated
effects in SDM studies [79], and further supported by SDM
studies of various other class B receptors L?Q, 80]; ii) a
hydrogen bond network between TM2 (R*®, H?*), TM3
(E**), and TM6 (T*%"), which are all conserved among class
B receptors shown to be important for either ligand binding
[81] and/or functional activation [81-85]; iii) the relative
locations of H*', and the 6.30-6.33 helical segment of
PTHR1 as derived from the alignment, agrees with Zn(ll)-
bridge linking studies [85]; iv) the formation of an H-bond
between W**" and a polar residue at position 2.45 (N/H/S)
(both conserved residues in class A and B GPCRs [67]),
which are observed in bRho, ADRB1, ADRB2, and AA2AR
crystal structures [9, 10, 12, 16]. Mutation of W**® in the
growth hormone-releasing hor-mone receptor (GHRHR)
greatly affects its stability [83]. Final arguments supporting
the alignment of class B GPCRs to bRho concern the
location of residues found to be involved in non-peptide
binding as described in section 4.2 and illustrated in Fig. (3).

In Fig. (4B), residues in contact with ligands in the bRho
[9] and ADRB?2 [10, 11] (rhodopsin-like or class A GPCRs)
crystal structures are marked and aligned with residues
proposed to be involved in ligand binding based on SDM
data in different class C GPCRs [72, 77, 84]). Site-directed
mutagenesis studies suggest that the binding sites of Calhex
231 and NPS-2143 to the calcium-sensing receptor (CASR)
overlap but are not identical, as predicted by the corres-
ponding receptor model [72]. The class A to class C GPCR
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amino acid sequence alignment in Fig. (4B) and the corres-
ponding CASR model (as well the GRM5 model discussed
later in section 4.2) are not only supported by SDM studies
probing the receptor-ligand binding pocket, but also agree
with experimental data supporting inter-helical interactions
in the cytoplasmic TM regions of class C GPCRs [82].

It should be noticed, however, that the same SDM data
have often been used to propose and support different amino
acid sequence alignments [72, 73] and/or ligand binding
modes [86, 87]. A clear example of misinter-pretation of
such experimental data is the deviation between the ligand
binding mode in the recently published AA2AR crystal
structure [12] and the earlier reported computational models
[18, 19] as discussed in the previous section 3. Furthermore,
there are numerous studies in which the effects of site-
directed mutations have been found to be ligand-dependent,
discriminating not only between different ligand types (i.e.
agonists vs. antagonists [56, 59]), but also between different
chemotypes with the same pharmacological effect [72, 75,
88, 89]. Although such detailed information can be used to
further refine and challenge receptor models, it should also
be considered as a warning for over-interpretation of the
receptor model by retrospective analysis.

The best one can do is to satisfy and use as many
experimental constraints as possible to construct and validate
the model (and not only those features which are line with
the modelers preconceptions) at the earliest possible stage
[90]. Moreover, receptor models should be applied and
challenged by prospective predictions. In fact, we believe
that the strength and added value of GPCR models especially
lies not only in mapping ligand-binding sites but also in
identifying new ligands from large chemical databases, as
supported by the many prospective virtual screening success
stories presented in section 5.

Aligning the amino acid sequences of the extracellular
loops of GPCRs is obviously less straightforward (step 5 in
Fig. (1)) [46], especially given the larger structural diver-
gence in these regions when comparing GPCR crystal
structures (Fig (2)). However, also in this case it might be
possible to use small loop segments of GPCR crystal
structures for construction of the loop of the target, but only
if this is supported by strong additional experi-mental data
[46], as discussed in section 4.5. Finally, even when the
amino acid sequence alignment between target and template
is established, alternative kinks in the TM helices should
sometimes be considered (section 4.3).

4.2. Customizing Ligand-Biased GPCR Cavities

Figure (3) shows how receptor-ligand binding mode
hypotheses can be derived from and/or rationalized by
ligand-based (SAR) and receptor-based (SDM) experi-
mental data. Ligand binding modes in bRho, ADRB2, and
AA2AR crystal structures have already been described in the
context of SDM data in section 3. Below will follow a
description of the ligand binding orientations in models of
S1PR1 (a lipid/class A receptor), GRM5 (a glutamate-
like/class C receptor), and CRFR1 (secretin-like/class B
receptor) and how experimental data are used to guide their
construction and validation.
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PTHR1 NY JBMBLFLSFMUBAVSIFVKDAVLYSG YAGCRVAVTFFLYFLATNYYWILVEGLYLHSLI
R2.39; H2.43:N/H2.45 :R/K2.53 E3.46 :H3.51
bRho  NHAIMGVAFTWVMALACAAPPLV EKEVTRMVIIMVIAFLICWLPYAGVA IFMTIPAFFAKTSAVYNPVIY
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GIPR GHFRYYLLLGWGAPALFVIPWVI RELRLARSTLTLVPLLGVHEVVFAPVT AKLGFEIFLSSFQGFLVSVLY
GLPIR WIFRLYVSIGWGVPLLFVVPWGI KERLAKSTLTLIPLLGTHEVIFAFVM IKLFTELSFTSFQGLMVAILY
CRFR1 LRKWMFICIGWGVPFPIIVAWAI YRKAVKATLVLLPLLGITYMLFFVNP VFIYFNSFLESFQGFFVSVFY
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Fig. (4). The use of experimental anchors to guide GPCR TM sequence alignments (step 1 in Fig. (1)). A) Amino acid sequence alignment
between the TM domains of class B receptors and bRho. The alignment on the left is in line with interhelical interactions displayed in the
CRFR model on the right (see text). B) Amino acid sequence alignment between the TM domains of class C receptors, bRho, and ADRB2.
Residues in contact with ligands in the bRho and ADRB?2 crystal structures are marked and align with residues proposed to be involved in
ligand binding based on SDM data (metabotropic glutamate receptors 1 (GRM1) and 5 (GRMD5, see also Fig. (3)) the calcium-sensing
receptor (CASR)). Carbon atoms of residues in the CASR pocket identified by SDM to be involved in binding of the specific ligand are
coloured dark grey, residues which are not important for binding of the ligand are coloured light grey.

Essential features of S1PR1 ligands are negatively
charged and positively charged groups in the polar “head” as
well as a long hydrophobic “tail” [91]. SDM data suggest
that the S1PR1 receptor binds its ligands through the con-
served residues R*?® and E>% [92]. The negatively charged
phosphate oxygens of S-FTY-720-P [93] forms an ionic link
to positively charged R*? residue, while the positively
charged protonated amine of the ligand makes a salt bridge
to the carboxylate moeity of E*?°. The hydroxyl group of S-
FTY-720-P interacts with one of these carboxylate oxygens
via another H-bond. The essential aromatic ring of S-FTY-
720-P [91] stacks between the aromatic rings of W®*® and
F33 while the apolar alkyl chain of the ligand dives down
into the relatively deep hydrophobic channel between trans-
membrane helices (TMs) 3, 4, 5, and 6 (subpocket i [40]).
Many residues lining this hydrophobic channel (among
which F>*", F®* and W®“) have recently been identified to
be involved in ligand binding and receptor activation in
S1PR1 [94]. Residue L°*® at the top of TM6 makes a
hydrophobic contact with the aromatic ring of S-FTY-720-P
as well. Mutation of this residue into a phenyl-alanine only
slightly affected the potency of S-FTY-720-P in S1PR1 [95].

Negative allosteric modulators of GRM5 are medium-
sized molecules with terminal polar and apolar ring systems
connected by a rigid straight linker [96]. SAR studies

indicated that the internal H-bond in fenobam and its
analogues (keeping the linker straight) is essential for their
potency [96]. The ligand pharmacophore corresponds to a
binding mode in line with SDM data [75], in which fenobam
binds deep down in the TM binding pocket forming an
essential H-bond with $** [75] (an unusual ligand binding
residue position in GPCRs [40]) and positioning its
hgdrophobic aromatic ring in a hydrophobic pocket between
P33 y340 T84 and WO [75]. The latter residue forms an
aromatic cluster with F>**and Y®*°, shown to be involved in
receptor activation [75]. Residue A’ whose mutation
diminishes fenobam binding, is modeled close to the pro-
posed ligand binding pocket as well and might be involved
in ligand entrance between TM 1 and 7, one of the putative
retinal entrance channels for bRho/Ops* [13], or have an
indirect role in stabilization of the pocket. Mutation of
residue R*?°, in the direct proximity of Y®%° also has a small
effect on fenobam potency, while mutation of L>*® only
affects binding of another negative allosteric modulator [75].

The CRFR1 antagonist pharmacophore is a hetero-cyclic
ring bearing a critical hydrogen-bond acceptor nitrogen and a
orthogonal aromatic ring [97]. CRFR1 ligands are highly
hydrophibic (polar substitutions of the pendant ring are not
tolerated [97]) and the orthogonal orientation of the aromatic
ring systems is essential [98]. In the CRFR1 receptor model,
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the sp2-hybridized nitrogen in the heterocyclic ring of
antalarmin forms a hydrogen bond with the protonated
imidazole nitrogen of H**, while the orthogonally oriented
aromatic rings, in line with X-ray and NMR ligand confor-
mation studies 4[398, 99], fit in an “aromatic cage” between
H3%®, y340 v58 M vO48 and F5*2, Site-directed muta-
genesis studies have indeed identified H*3 [100] and M>*
[88, 100] to be involved in interactions with non-competitive
antagonists.

In our GPCR modeling protocols, we have used the
above described binding mode hypotheses as experimental
anchors to guide the refinement of 3D receptor models,
shaping the binding pocket into a proper mould for structure-
based virtual screening studies along the different steps in
the GPCR modeling process (steps 1-5 in Fig. (1)). Already
the selection of the modeling template (step 1) can be driven
by such experimental anchors, by considering for example
TM-TM distances (Fig. (2A), section 3), helical kinks
(section 4.3), and extracellular loop confor-mations (Fig.
(2B), section 4.5). For the construction of the GRM5 model,
for example, we used ADRB2 as a modeling template
because in this structure the distance between TM3 and TM6
at the intracellular side of W®*® is just large enough to
accommodate fenobam (Fig. (3)), while the bRho structure is
not compatible with this constraint [101]. Initial docking
studies of known ligands in the receptor model have been
guided by pharmacophore constraints [23, 30, 46, 50, 102-
104] to satisfy experi-mentally determined (or hypothesized)
receptor-ligand interactions and sometimes requires manual
changes of rotameric states of residue sidechains. For
example, the construction of a SIPR1 model required to
rotate F°** side chain to accommodate the binding of the
long aliphatic tail of S-FTY-720-P (Fig. (3)). Pharmacophore
and/or other geometrical constraints linking atoms or groups
between receptor and ligand or within receptor or ligand
themselves (e.g., distance and angle constraints to satisfy a
specific H-bond) have been included in energy minimization
and MD/MC refinement procedures (steps 3-5) as well [30,
46] to satisfy experimental data. Such MD/MC simulations
are generally performed in a fully hydrated phospholipid
bilayer [46, 105, 106]. As a result of such a refinement
protocol the shape of the binding pocket as well as the
orientation of key residues are adapted to a known ligand in
an experimentally supported binding mode. It should be
noticed that not only modeling of the TM cavity, but
(especially) also loop modeling requires experimental
constraints (step 5 and discussed in more detail in section
4.5). Receptor binding pocket expansion procedures without
the presence of a ligand have also been described [107], but
only few GPCR models applied for virtual screening (VS)
have not been optimized in the presence of a known ligand.
However, it should be stated that there is a danger to bias a
ligand-binding cavity towards a single chemotype if too
many constraints are given as input. Conformational samp-
ling of the receptor structure affords the selection of
conformers able to accommodate known ligands according
to experimental data and discriminate them from non-
binders. In several GPCR modeling studies, alternative
conformations of the receptor (refined in the presence of
different ligand and/or different cluster representatives from
MD or MC trajectories) have been i) tested by retrospective
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virtual screening to select the “best” model for prospective
VS [50, 86], ii) used as an ensemble during the actual VS run
[28, 105], or iii) considered as different states of the receptor
and used to identify different ligand types [20, 24, 30].
Similar ligand-receptor interaction steered GPCR modeling
strategies as described above like Mobile [108] and RED
[50] are presented in section 5.

4.3. Questioning Kinks: Alternative Conformations and
Orientations of TM Helices

In principle, the receptor refinement protocols (steps 2-5
in Fig (1)) described in section 4.2 aims at refining not only
the side chains but also the backbone conformation of the
receptor to shape the binding pocket to an experi-mentally
defined ligand-receptor binding mode. It is however
questionable whether large backbone changes, associated to
high energy barriers, can be sampled by MD or MC simu-
lations. Therefore, alternative TM kinks and orientations
should probably be considered at an earlier stage (step 1 in
Fig. (1)) as well.

As discussed in section 3, many of the structural
differences between the helical bundles in GPCR crystal
structures can be explained by specific sequence motifs
(involving Pro/Gly/Thr/Ser residues) and/or TM-TM inter-
actions which induce and/or stabilize helical kinks. The
prediction of TM kinks based only on sequence motifs [41],
however, can be rather difficult and it is very unlikely that all
TM conformations are already covered in the set of currently
available GPCR crystal structures. Moreover, it has been
demonstrated that kinks may be reminiscent of ancestral
features which disappeared along evolution [109].

Nevertheless some attempts have been made to model
alternative helical kinks, guided by experimental data
supporting the involvement of specific residues in ligand
binding, but not facing the ligand binding pocket in initial
receptor models based on bRho (or any other GPCR crystal
structure) [7, 8, 20, 23, 26, 110, 111] (step 1 in Fig. (1)). The
best way to test alternative TM conformations, however, is
to challenge them in retrospective, or even better, prospec-
tive structure-based virtual screening experiments as the ones
described below.

For the construction of receptor models of the CCR5
receptor (a chemokine receptor, rhodopsin-like GPCR class)
and of CRFR1 (secretin-like GPCR) we have consi-dered
alternative helical kinks, which improved prospec-tive and
retrospective virtual screening results, respec-tively. The
T2%8XP2% motif in CCR5 and other chemokine receptors has
been proposed to induce an alternative kink in TM2, as
supported by SDM data probing the TM2-TM3 interface
[111] and receptor-ligand interactions [89, 112, 113]. This
alternative kink directs the residue at position 2.60 (Trp in
most chemokine receptors) into the binding pocket, instead
of towards the membrane layer as in the bRho, ADRB2, and
AA2AR crystal structures. We were able to identify new
CCRS5 agonists by structure-based virtual screening using a
CCR5 model containing this alternative TM2 kink [26], but
not with a model based on bRho. Analogously, Secretin-like
receptors presents two conserved proline residues (P*“,
P6'42()) on different posi-tions than rhodopsin-like receptors
(P>* and P®Y). Site-directed mutagenesis studies in secre-
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tin-like receptors showed that P%*? is important for receptor
activity and ligand binding [114, 115]. In accordance with
modeling studies on CCR5 (TM2 and TM3) [26, 111] and
S5HT1A (TM3) [110], we performed MD-simulations with
model TM peptide stretches of the secretin-like receptor
CRFR1, containing Ser, Thr, Pro, and Gly residues conser-
ved among secretin-like receptors and alanine at the other
positions to determine the trends of helix bending for the
different TMs. As the relative orientation of most intra-
cellular TM regions were shown to be in line with experi-
mental data (see section 4.1) these regions were used to fit
the MD snapshots (Fig. (1)). Especially the extracellular top
of TMs 5 and 6, which surround the postulated non-peptide
ligand binding pocket in secretin-like receptors, show
divergent TM bending compared to bRho and ADRB2 (Fig.
(5)). Interestingly, a retrospective virtual screening accuracy
of the alternative TM-reoriented CRFR1 model was signi-
ficantly higher than the accuracy of bRho-based and
ADRB2-based models. The ligand binding pocket of the
TM-reoriented CRFR1 model is discussed in more detail in
section 4.2.

Salo et al. [23] modeled an alternative conformation of
TM2 of the cannabinoid CB2 receptor (CNR2) to position
residue C2.59, which is found to be facing the ligand binding
pocket of CNR2 based on experimental data [116] but is
directed towards the membrane in bRho and other GPCR
crystal structures The kink in the TM2 of bRho induced by
the G**°*G**" motif was straightened, position 2.57 in CNR2
was aligned to position 2.58 of bRho. TM5 was modeled as a
straight helix (like in a previous CNR1 model [117]),
because this helix does not contain a proline residue at
position 5.50 which induces a kink in bRho and all other
GPCR crystal structures and because the location of residue
Y5¥ in a straight helix more consistent with experimental
data [23]. The receptor model was refined by MD and
subsequently successfully used to retrieve a new CNR2
agonist, as described in more detail in section 5.

Graaf and Rognan

In one of the earliest reported retrospective VS studies
[20], the TM6 helix in bRho-based models of the adrenergic
beta 2 (ADRB2), dopamine D2 (DRD2), and delta opioid
(OPRD) receptors was rotated counter-clockwise from 30°
(when viewed from the extracellular domain), to model the
active state of the receptor (based on what was known at that
time regarding the activation of bioaminergic receptors [4]).
These models were further refined in the presence of sets of
known agonists manually docked according to experimental
data and successfully used to retrieve known full agonists
with hit rates very similar to those previously observed for
antagonists in inactive state receptor models [20]. The same
approach was used by others to construct an agonist-bound
model of the orphan C-X-C chemokine receptor type 7
(CXCR7) and successfully applied this model to find
agonists for this receptor [25]. Recently the inactive inverse
agonist bound ADRB2 crystal structure [30] was customized
to enable selective retrieval of full and partial agonist by
retrospective VS. Instead of rotating TM helices, only minor
conformational changes (rotation of two serine residues
known to specifically H-bond to full/partial agonists) were
required to model what probably represents an early inter-
mediate state in agonist binding (Fig. (6)). Rearrangement of
the receptor-agonist binding mode via either a rotamer toggle
switch [31] or rigid-body shifts of see-saw motions of
transmembrane segments [32] probably involves confor-
mational changes like bending [31, 118] and/or rigid body
movements [32, 119] of TM helices which are likely to be
ligand-dependant and therefore difficult to predict.

As an alternative, fully template-independent de novo
GPCR modeling approaches such as Predict [8] and Mem-
bstruck [7] can be used to model alternative TM orien-
tations and kinks. Predict [8] is a multi-step computational
protocol that identifies TM sequences, proposes alternative
packing geometries for the seven helices (decoys) into 2D
space, optimizes the relative rotational orientation of the
helices, converts the most likely decoys into a simplified 3D
representation, optimizes and clusters the best solutions,

TM-rotated (—) ADRB2-based (-)
Q) veds ‘6 51\ ) F6.52
/\/~ -

o Q5 44 } “ Q5.44

_:r F}‘g’; e \.y;f' e | \J

! \,\r o /; ‘ & “‘pm = Ysps 9
F6.51. 'ﬁs 36 ‘&5’ Y648 41336\ os
&g ) 4vsas ( :

bRho-based ( )

F6.5 )
\' F6.52
r

5?’ ‘ VS

100 | S ALY S rnr}

——t

wY5 43

Fig. (5). The binding mode of antalarmin in different models of the CRFR1 receptor. A model in which the individual TM helices are
modeled by MD (step 1 in Fig. (1), see description in text) and models derived by homology modeling from bRho and ADRB2 crystal
structures. Important ligand binding residues in the CRFR1 pocket are depicted as balls and sticks. Hydrogen bonds are indicated by black
dotted lines. On the far right panel: Enrichment in virtual screening of a focused database of 987 drug-like compounds (false positives, FP)
and 13 known CRFR1 antagonists (true positives, TP) against: TM-reoriented (solid black line), ADRB2-based (dotted black line), and
bRho-based (solid grey line) models of CRFR1. Docking simulations are performed with GOLD-Goldscore and docking poses are filtered
and ranked according the Interaction fingerprint (IFP) topological scoring function [128]. The thin dashed black line represents the fraction

of actives expected by random picking.
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minimizes all-atoms models of each cluster repre-sentative
and finally refines the most stable model by MD. Predict
models have been successfully used to retrieve antagonists as
well as agonists both in retrospective [8] and prospective
[48, 49] virtual screening studies, as will be discussed in
more detail in section 5. Membstruck [7] is another de novo
GPCR modeling method which works according to a similar
protocol as Predict. The program was used to construct both
antagonist and agonist-based models of ADRB2, and an
agonist-based model was able to discriminate known
ADRB?2 ligands from a database of decoys [47].

4.4. Docking Ligands into GPCR Models

Along the different GPCR modeling steps different
alternative receptor conformations should be primarily be
selected and challenged by their ability to accommodate
known ligands in a binding mode satisfying experimen-tally-
determined receptor-ligand interactions. In the final valida-
tion step, one can test and apply the receptor not only for its
ability to reproduce experimentally plausible ligand binding
poses or to use the binding modes to explain and predict
SAR and SDM data (structure-based design), but also to
retrieve ligands from large chemical databases. The most
widely used technique to predict receptor-ligand binding
orientations in a rapid manner is molecular docking [120],
which combines an algorithm to generate different docking
poses with a scoring function to rank them. Selection of the
most appropriate docking/ scoring protocols for binding
mode prediction and structure-based virtual screening is very
much dependent on physicochemical details of target-ligand
interactions [121-124] and fine details of the protein
structure [125, 126]. It is therefore necessary to evaluate
different docking-scoring approaches or even to optimize
scoring functions for protein/ligand training sets before
applying them to unknown test cases. Post-processing strate-
gies for selecting and ranking docking poses have recently
received much attention as an alter-native approach to solve
the problem of protein-ligand docking and scoring accuracy
[127].

In the past few years we have been using a topological
scoring function (IFP) based on protein-ligand interaction
fingerprints [128] for ranking docking poses in structure-
based virtual screening runs [30, 46, 129]. Receptor-ligand
binding modes derived from known receptor-ligand X-ray
structures [30, 128, 129] and/or supported by SAR/
pharmacophore and site-directed mutagenesis data [30, 46]
can be used as IFP references. Docking low-molecular
weight compounds, notably in open protein cavities (such as
in GPCR receptor models lacking ecl2 on top of the TM
binding pocket), can yield multiple different binding modes
with comparable binding energies according to classical
energy-based scoring functions [128]. Furthermore, omitting
ecl2 from GPCR receptor models can provoke docking
solutions of large, highly flexible “inactive” compounds that
are artificially oriented into the unoccupied region [46, 103].
The IFP scoring protocol however, is able to discriminate
between irrelevant ligand docking poses and docking poses
comparable to that of known inverse agonists/antagonists
[30, 46], and has even been successfully used to discriminate
between inverse agonists/full antagonists and full/partial
agonists [30], as exemplified in Fig. (6).
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As previously reported [30] and demonstrated in Fig. (6),
the topological IFP scoring function outperforms Gold
scoring [130] in retrieving ADRB2 inverse agonists/ antago-
nists in the original crystal structure (e.g., timololol (A)) and
is better suited for selectively retrieving agonists in the
customized ADRB2 structure than Gold and Surflex scoring
[131] (e.g., procaterol (B) and carvedilol (C)). Interestingly,
the top-ranked pose of known ADRB2 ligands according to
the native scoring function often has also one of the highest
IFP similarity value. This means that the scoring functions
perform relatively well in terms of binding mode prediction.
The docking score itself of the ligand pose is however
relatively poor, resulting in low rankings in the hit lists (Fig.
(6D)). The poor scores of these poses stem primarily from
steric rather than polar terms of the scoring functions.
Interestingly, the IFP scoring function can easily overcome
scoring problems associated with ligand confor-mational
energies [132] or small changes in the protein conformation
(ligand-induced fit) [126] even without fine tuning the
settings of these docking programs. Post-pro-cessing poses
by local/full energy refinement of the corresponding
complex will partly solve the problem but not entirely unless
ensemble docking is performed on a set of previously-
generated protein conformers.

Fig. (6) illustrates how IFP manages to distinguish
partial/full agonists from inverse agonists/antagonists. R,S-
procaterol (panel B) and IFP reference R-isoproterenol (B,C)
share most of their interactions with the customized ADRB2
structure thus yielding a high IFP score despite a weak
Surflex score and rank (D). The antagonist S-carvedilol (C),
on the other hand, has a high docking score as it makes a
high number of contacts with the receptor binding pocket.
Like the R-isoproterenol reference, carve-dilol interacts with
the three important serine residues on TM5 (S5.42, S5.43,
and S5.46) but through a set of different interactions
(hydrophobic contacts instead of H-bonds; panel D). While
not affecting the Goldscore (carvedilol is ranked first),
changing the type of molecular interactions to the receptor
yields in a relatively low IFP score and ranking (D), as was
also determined for almost all other inverse agonists/
antagonists docked in the customized ADRB?2 structure [30].

The example of timolol also demonstrates, in agreement
with a recent comparative evaluation of different virtual
screening methods [133], that IFP scoring can be used for
various scaffold hopping scenarios. Timolol and carazolol
share the same 1-(isopropylamino)-3-aryloxy-propan-2-ol
scaffold, but marked differences in the aryl moiety (Fig.
(6A)) are disfavourable to a good 2D-similarity rank, while
IFP scoring (as well as carazolol-based 3D-similarity
methods) still rank timolol among the top scorers (Fig.
(6D)). Alternatively, it was observed in the same study that
when only disconnected fragments (maximum common edge
subgraph MCE) are common to two ligands the 3D-
similarity ranking is logically affected, while IFP scores (and
2D-similarity scores) are not [30].

4.5. Laying the Loops

As discussed earlier in section 3, bRho seems to be a
relatively suitable modelling template for modelling the
upstream ecl2 segment, while the long upstream in
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Fig. (6). Docking poses selected by IFP of: (A) S-timolol (yellow carbon atoms, docked with Gold) in the ADRB2 crystal structure
compared to the reference binding mode of S-carazolol (green carbon atoms), (B) R,S-procaterol (yellow carbon atoms, docked with Surflex)
and (C) S-carvedilol in the customized ADRB2 structure compared to the reference binding mode of R-isoproterenol (green carbon atoms).
H-bonds between the docking pose and the receptor are depicted by black dots. The IFP bitstrings of receptor-bound timolol (A), R,S-
procaterol (B), and carvedilol (C) are compared to the reference IFPs of carazolol and isoproterenol in panel D. For reasons of clarity, the bit
strings of only six residues (out of 33) are shown as an example. For each pose and corresponding IFP bit-string, ranks in a retrospective
virtual screening excercise [30] are indicated for Gold/Surflex docking ranked by IFP, Goldscore and Surflex score.

combination with short downstream ecl2 loops of ADRB2
and AA2R are relatively rare among GPCRs (Fig. (2C)).
Nevertheless, the different extracellular loop structures
displayed in the currently available GPCR crystal structures
tell us to approach GPCR loop modeling (step 5 in Fig. (1))
with much caution and that it should be reserved for cases
where loop building can be guided by experimental
restraints, rather than carried out in a high-throughput
fashion and derived directly from bRho (or any other GPCR
crystal structure) [46]. The minimal experimental constraint
imposed on modeling of the second extracellular loop should
at least be the conserved disulfide bridge between TM3.25
and C45.50, as derived from amino acid sequence align-
ments (section 4.1). For receptors lacking any of these
cysteine residues, its is better to omit ecl2 from the model.
Other experimental constraints, like H-bonds and contacts
between the extracellular loop and the ligand (or other parts
of the receptor) can be used at the loop modeling step itself
[134] (step 5 in Fig (1)), and during the refinement of the
loop conformation as described in section 4.2 (step 4).

For a set of GPCR targets, the dopamine D2 receptor
(DRD2), adenosine A3 receptor (AA3R), and the throm-
boxane A2 receptor (TA2R), we have evaluated the impli-
cation of including ecl2 atomic coordinates in terms of
structure-based virtual screening accuracy: the suitability of
the 3-D models to distinguish between known antagonists
and randomly-chosen chemically-similar decoys using
automated docking approaches [46]. Explicit modelling of
the ecl2 loop was found to be important in only one
(AA3AR) out of three test cases whereas a loopless model
was shown to be accurate enough in the two other receptors.

Interestingly, the antagonist binding mode we proposed for
AA3AR [46] is not in line with the binding orientation of
ZM241385 in the recently reported crystal structure homo-
logous AA2AR receptor [12], but could nevertheless be used
to achieve significant enrichments over random picking
(albeit somewhat lower than in DRD2 and TA2R models) in
the retrospective VS study.

Also several other structure-based virtual screening
studies have shown that loopless TM models of GPCR
receptors can be suitable targets for virtual screening (see
Table 1) [8, 47-50]. This further supports our believe that
loop (notably ecl2) modeling should be reserved for cases
where loop building can be guided by experimental restraints
and the effect of incorporation of extracellular loop(s) can be
tested by retrospective VS.

4.6. Model Validation by Prospective Virtual Screening
of Compound Libraries

The final refined receptor model can be evaluated and
validated in various ways. Many models have been used to
rationalize site-directed mutagenesis data and/or structure-
activity relationships, mostly in a retrospective manner. We
believe that the strength and added value of GPCR models
especially lies in its application to identify new ligands from
large chemical databases by prospective virtual screening
studies (step 7, Fig. (1)). Fig. (7) gives an overview of a
general structure-based virtual screening flow chart.

The initial compound library should be filtered to remove
undesirable compounds exhibiting chemically reactive
moieties [135], scaffold-inherited toxicity [136], or poor oral
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Fig. (7). Structure-based virtual screening flow chart.

bioavailability [137]. An overview of chemical libraries
suitable for virtual screening is presented in [138]. In most
reported GPCR-based virtual screening studies, such pre-
filters are applied to construct the chemical library to be
screened (Table 1). Additional filters, derived from property
ranges (e.g., molecular weight, number of rotatable bonds,
number of rings, hydrogen bond donor/acceptor counts,
number of positively/negatively charged atoms, etc.) deter-
mined from a set of known actives (step 1 of Fig. (7)), are
applied in most GPCR VS studies as well (Table 1) to obtain
a more “lead-like” database. Chemical similarity descriptors
and metrics [139] and 3D-shape similarity or pharmacophore
models [140] derived from known ligands can be used to
narrow down the number of compounds to be handled in
automated docking simulations (step 2) even further.

In step 2 the chemical database is automatically docked
in the receptor model. Numerous automated docking prog-
rams [138, 141] and scoring functions [138, 141] based on
different physicochemical approximations are available. In
several GPCR VS studies [86, 102, 104, 142], docking simu-
lations have been guided by pharmacophore constraints [143,
144].

In steps 3 and 4, the docking poses are post-processed
and scored, respectively. Many structure-based virtual
screening investigations have only employed docking
scoring functions to rank docking poses, but more and more
structure-based virtual screenings apply additional filters to
post-process docking results. The reason for this is that, as
already mentioned in section 4.3, the scoring accuracy of
docking-scoring combinations is very much dependent on
physicochemical details of target-ligand interactions [121-

r exp. validation

124] and fine details of the protein structure [125, 126]. One
way to overcome these problems is to use a consensus
scoring strategy. One or several scoring functions [121] can
be used in combination with one or several docking algo-
rithms [145], applied to one or a set of receptor structures
[146], and using different consensus scoring scenarios [20].
Especially the latter consensus scoring approach has been
applied in several of the VS studies [20, 24, 29, 86, 102,
103], but also docking into an ensemble of receptor
coordinates at the same time [28], or into alternative receptor
structures to retrieve only specific ligand types [20, 30] has
been applied. Topological filters can be used to filter out
poses exhibiting steric or electrostatic mismatches between
the ligand and its target [147]. In the case of CRFR1 (Fig.
(5)), we have discarded docking poses not satisfying
important ligand-receptor H-bonds. Such essential receptor-
ligand interactions can be derived from experimental data
featuring a reference binding mode of a true active, and can
be used as post-processing filter [29, 30, 50, 86]. In some VS
studies, a receptor-ligand interaction finger-print (IFP)
scoring metric [128, 148] has even been used to rank
docking poses [30, 46, 101]. When too many ligands are
retrieved along the VS funnel, it is generally wise to cluster
virtual hits by chemical diversity (step 5). The most intuitive
way, at least for medicinal chemists, to achieve this kind of
classification is to group compounds by chemical scaffolds
[24, 26, 149] and prioritize scaffolds rather than individual
compounds. Sampling a few representative analogs for each
scaffold usually enables a selection of chemically-dissimilar
compounds for biological evaluation [26]. Finally, the
selected docking poses and compounds should be visually
inspected in step 6 for the ultimate selection: no algorithm
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yet outperforms the brain of an experienced modeller for
such a task.

Parallel to the docking-based virtual screening run, 2D-
similarity, 3D-similarity, or pharmacophore searches can be
performed to complement the docking-based hit list [23, 27,
50, 122, 142, 150]. The receptor bound conformation of
reference compounds can be derived from docking simu-
lations in the receptor model. In this way, the receptor model
and information derived from the receptor-ligand complex
are used to set up 3D-similarity searches or pharmacophore
models. Alternatively, pure receptor-based pharmacophore
models, derived from ligand-receptor interaction hot spots in
the binding pocket, can be even used in the absence of a
ligand [151].

5. GPCR VIRTUAL SCREENING SUCCESS STORIES

As described in the previous section, many possible
problems and pitfalls have to be overcome in the GPCR
modeling process. However, even despite the possible
structural inaccuracies of the final refined GPCR models,
these models have been efficiently used to find new ligands,
as will be described in this final section.

Table 1 gives an overview of recent prospective struc-
ture-based VS studies on GPCR models. Figure (8) presents
agonists as well as antagonists identified by prospective
structure-based virtual screening studies in GPCR models
([8, 23, 24, 26-28, 49, 50, 103, 104, 152, 153], see Table (1))
and the previously known ligands used to refine the model
used for the structure-based VS run. Notice that structure-
based virtual screening often yields new chemical scaffolds,
but still contain essential functional groups like positively or
negatively charged atoms, often because these chemical
features/properties were used as filters/constraints to set up
the initial ligand database or score/rank docking poses.
Interestingly, novel receptor agonists have been found using
antagonist-bound receptor models and vice versa (see also
Table (1)). Fig. (8) shows that most of the studies have
focused on bioaminergic receptors, but that more and more
successful prospective structure-based virtual screenings are
reported also for other rhodopsin-like GPCRs (brain-gut
peptide, chemokine, lipid, peptide, purine), while the first
models of glutamate-like and secretin-like receptors have
been successfully challenged in retrospective virtual screen-
ing exercises, opening up new challenges in the field of
structure-based VS for GPCR ligands. Only prospective (and
not retrospective) VS studies on GPCRs will be discussed in
more detail in the following section.

The very first prospective virtual screening study on a
GPCR model was conducted by Varady et al. on the identi-
fication of dopamine D3 (DRD3) receptor ligands [105]. A
homology model was derived from the bRho crystal struc-
ture and refined by MD in a fully hydrated phospholipid
layer. Snapshots from the MD-trajectory were clustered into
four families out of which one representative was selected
for docking studies. First a pharmacophore was derived from
a set of known DRD3 ligands (antagonists and partial
agonists (Fig. (8)) and used as a query for retrieving a first
hit list of 6 727 compounds from an initial database of 250
000 compounds. This hit list was then docked to each of the
four receptor cluster representatives. A total of 2 478
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compounds, ranked within the top 30% of the library for at
least two receptor conformations, were finally selected.
From this second hit list, 1 314 molecules showing a Tani-
moto similarity index lower than 80% to any of the 10
known DRD3 ligands were selected. Twenty molecules were
finally selected for biological evaluation, eight com-pounds
(Fig. (8)) exhibited submicromolar binding affi-nities.

A similar strategy was used by Evers et al. to identify a
new neurokinin-1 receptor antagonist [104]. Ligand-biased
modeling of the receptor was first realized with the Mobile
program. A set of crude homology models was first obtained
from the bRho crystal structure and a known NKI1R
antagonist (Fig. (9)) was docked into the receptor model.
Four poses satisfying key interactions were selected for
generating a new set of receptor models scored by a
knowledge-based scoring function to satisfy the receptor-
ligand constraints. The selected model was refined by energy
minimization. A 1D-filter (removing large and flexible
structures) was used to discard 50% of the initial database of
800.000 compounds. From this reduced database, 131 967
compounds were selected satisfying a 2D-pharmacophore
query, from which subsequently 36 704 compounds were
selected satisfying a 3D pharmacophore hypothesis. Using
an implicit definition of forbidden volumes, the size of the
hit list was further reduced to 11 109 compounds. Only these
molecules were docked to the refined receptor model
(imposing an H-bond to an important residue in NK1R) and
scored by the same knowledge-based scoring function.
Energy minimization refinement and visual inspection of the
1000 best-ranked ligands resulted in the final selection of
seven candidates. One of these molecules (Fig. (8)) proved
to bind to NK1R with a submicromolar inhibition constant.
The same approach was used to identify alpha 1A adrenergic
receptor (ADA1A) antagonists [103]. Homology models of
ADALA were constructed in a similar fashion as for NK1R
and the one that best suited the known binding mode of a
reference antagonist was selected for structure-based virtual
screening. A series of filters of increasing complexity
(satisfying topological and pharmacophore restraints) were
then applied to select 22 950 compounds (from the initial
728 000 compound stock collection) for docking simulations
in the receptor model. An optimal docking-scoring strategy,
derived from a retrospective virtual screening evaluation,
was used to select 300 compounds which were then clustered
and a diverse subset of 80 molecules was finally evaluated
for receptor binding. Thirty seven compounds exhibited Ki
values lower than 10 uM, of which 24 molecules bound in
the submicromolar range and three compounds (Fig (8))
below 10 nM.

An alternative ligand-steered homology method was
recently reported by Cavassoto et al. to find new antagonists
of the melanin-concentrating hormone receptor 1 (MCHR1)
[50]. First, a homology model was built based on the bRho
crystal structure. In a second step, 20 receptor-ligand models
were generated by docking four known ligands (Fig. (8)) into
the receptor model using an experimentally supported
receptor-ligand distance constraint, ranked by a scoring
function and clustered. These 20 structures were then
subjected to MC simulations (without receptor-ligand
distance constraint) and the top 20 best-energy complexes
were selected and merged with the original 20 structures.
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Table1. Overview Prospective Receptor-Based Virtual Screening (VS) on GPCR Models

Receptor® | Template® | Construction | ecls® Refin. Database Conf. Post- Prediction Ref*
Method® Protoc® | Pre-Filter’ | Search? Processing Retrospec. Prospective
+ Scoring” Ligand Initial db’ Hits' (tested)

amines

ADA1A bRho Mobile 2 em di+2D+3D ad clust+score ant 827.000 37 ant (80) [103]

ADRB2 ADRB2 X-ray 123 - ? ad score ant 4.000.000 19 ant (56) [17,156]
DRD1 DRD3 GPCRgen 1,2,3 em di+2D ad clust+c-score - 310.000 3ant (17) [24]
DRD2 DRD3 GPCRgen 1,23 em di+2D ad clust+c-score - 310.000 3 ago+2 ant (17) [24]
DRD2 de novo Predict no em+md di+l ad score ant/ago 1.600.0000 7 ant (42) [8,49]
DRD3 bRho thread 12,3 | em+md di+3D ad score+2D - 250.000 8 lig/ago (20) [105]
HRH4 bRho Modeller 1,2,3 em dl (cnstr) ad c-score lig 5.066.235 16 (255) 29,86]
5HT1A de novo Predict no em+md di+l ad clust+score+2D ago 1.600.0000 16 lig/ago (87) [48,49]
5HT4R de novo Predict no em+md di+l ad clust+score+2D ago 1.600.0000 19 lig/ago (93) [49]

Brain gut peptides

MCHR1 bRho thread no em di+2D+3D 3D clust - 615.000 19 ant (795) [161]
TRFR1/2 bRho 3D-map 1,2,3 | em+md 3D ad score+clust. - 1.000.000 8 ant (~100) [28]
Chemokines
CCR3 de novo Predict no em+md di+ll ad clust+score+2D - 1.600.0000 5 lig/ant (43) [8,49]
CCR4 bRho thread 12,3 | em+md di+ll ad score - 450.000 16 ant (116) [154]
CCR5 bRho thread+kink (2) 1 em di+lI+2D ad clust+score+2D ant 1.600.0000 | 6ago +1ant (59) [26]
Lipids
CNR2 bRho thread+kink 12,3 | em+md none ad+3D 3D+score - 55.600 1 ago (68) [23]
(2+5)
peptides
FPR1R bRho thread no em none ad+3D 3D - 480.000 52 ant (4342) [150]
NK1R de novo Predict no em+md di+l ad score lig 1.600.000 53 ant (8) [8,49]
NK1R bRho Mobile 2 em di+2D+3D cnstr ad norm score - 827.000 lant(7) [104]
purines
FFAR1 bRho thread 1,23 | em+mc | dl+2D+clus ad+3D score+3D+clust. - 2.600.000 13 ago+2 ant (52) | [27,152]

JReceptors clustered according to Surgand et al. [40]; "bRho (bovine rhodopsin) and ADRB2 are crystal structures, other receptors are models, de novo: no template used;
Construction methods of the TM helical backbone (GPCRgen [34], Mobile [108], Predict , Membstruck) are described in more detail in the text; “Construction of extracellular loops
(ecls) explicitely guided by experimental data are underlined; ®Energy minimization (em) and molecular dynamics (md) refinement protocols are generally performed in the presence
of a ligand; "Consecutive filters (dl (drug-like physicochemical properties), 1l (leadlike physicochemical properties), 2D (two-dimensional topological/chemical
similarity/pharmaphoric features/sub-groups), 3D (three-dimensional pharmacophore)) used to compile database for docking/3D conformer search; YConformer search method: ((H-
bond) constr(ained)) automated docking (ad), protein-based or docked ligand-based 3D pharmacophore search (3D); "Method to score, rank and/or filter conformers: clust. (scaffold
clustering), (c-)score ((consensus) docking scoring function), 2D (two-dimensional topological/chemical similarity/pharmaphoric features/sub-groups), 3D (three-dimensional
pharmacophore); "Prospective validation: initial databatabase (db) and "number of experimentally confirmed hits with detectable affinity/activity (of the total number of tested
compounds); “References describing model construction and refinement as well as virtual screening are reported; “not reported.
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Fig. (8). Examples of agonists (ago) and antagonists (ant) identified by prospective virtual screening studies in GPCR models ([8, 23, 24, 26-
28, 49, 50, 103, 104, 152, 153], see Table (1)) refined with known ligands (upper structure). It should be noticed that only one representative
hit (and one reference compound) is presented for each VS study and that compounds of some prospective VS studies reported in literature
(Table 1) have not been disclosed (DRD3, 5HT4, NK1R, and CCR3 [49], and CXCR?7 [25]).

These structures were clustered and visually inspected for
the presence of experimentally supported receptor-ligand
interactions, yielding 8 models which were challenged by
retrospective virtual screening. The model retrieving the

highest diversity of known ligand chemotypes in the top-
ranked list was selected and used for a prospective docking-
based virtual screen of a filtered database of 187 084
compounds. A set of filters was imposed to post-process the
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docking poses requiring the absence of ligand-receptor
clashes and presence of a receptor-ligand H-bond. The
remaining ca. 7 000 compounds were clustered by chemical
similarity and the highest scoring compounds per cluster
were chosen. Molecules with a total charge of +1 were given
priority for biological evaluation, resulting in a set of 281
compounds of which 129 were commercially available. Six
of these exhibited Ki values in the micromolar range (a hit
enrichment of 12 fold compared to random screening of a
corporate collection).

In a relatively straightforward structure-based VS studies
of Bayry et al. [154] and Liu et al. [153], antagonists were
found by docking studies on bRho-based homology models
of chemokine receptors 4 (CCR4) and 5 (CCRS), respec-
tively (Fig. (8)). About 13 000 compounds selected from an
initial database of 450 00 compounds by a pharmacophore
filter were docked in CCR4 and scored by a single scoring
function, yielding a hit list of 116 top-ranked compounds; 16
of these inhibited CCR4-mediated cell migration with IC50
values lower than 10 nM. A database of 80 000 compounds
was docked in CCR5 and ranked with a single scoring
function, yielding a hit list of 150 compounds from which 95
were purchased and tested; one compound exhibited an IC50
value of 2 uM which was further optimized by structure-
based design (see later).

Edwards et al. [150] identified novel formylpeptide
receptor (FPRIR) antagonists by virtual screening using a
pharmacophore model derived from antagonist docking
poses in a FPRIR receptor model (Fig. (8)). Exclusion
spheres derived from the receptor binding pocket were added
to the pharmacophore model and the top-ranked 4 234 com-
pounds were selected from a ~480.000 compound library; 52
of these compounds were confirmed hits, of which 30 had Ki
values in the micromolar range.

While in the above mentioned VS studies new anta-
gonists were found by docking into receptor models based
on the inactive bRho structure and refined using known
antagonists (Fig (8)), more and more reports show that also
agonists can be found by structure-based VS in such inactive
receptor models [23-27]. In some of these studies [23, 27],
the initial bRho-based ground state model was refined by
true agonists, but in other cases [24, 26] the inactive model
was even refined by antagonists. The other way around,
agonist-biased models have also been successfully applied to
find antagonists [24, 29]. Examples of these studies will be
discussed in more detail in the following section.

Kellenberger et al. identified new CCRS5 agonists by
virtual screening against an antagonist-customized receptor
model [26] (Fig. (8)). A homology model was derived from
the bRho crystal structure, but an alternative bend in TM2
induced by the T>*°XP**® motif (conserved among chemo-
kine receptors) was modeled separately (see section 4.3).
This receptor model was validated by retrospective virtual
screening using two different docking programs. A library of
1.6 million compounds was first filtered by 1D (drug
likeness) and 2-D pharmacophore filters, decreasing the
numbers of hits to 431 029 and 44 524 compounds, respec-
tively. This database was docked into the receptor model by
two different docking programs in parallel. The top 5% of
the two hit lists were then independently classi-fied based on
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common scaffolds. Scaffold classes enriched enough in well-
scored molecules were retained and a final list of 77
molecules was selected by visual inspection of the binding
mode. Of these, 59 could be purchased and were biologically
tested; 10 compounds exhibited a detectable binding affinity
for CCRS5, of which four molecules had an IC50 in the high
micromolar range, and of which three were surprisingly
characterized as agonists.

Salo et al. found a novel agonist of the cannabinoid CB2
receptor (CNR2) by structure-based VS in receptor model
derived from the ground state bRho crystal structure and
refined in the presence of a known CNR2 agonists (Fig. (8)).
The conformations of TM2 and TMS5 were customized to
position certain residues shown to be involved in ligand
binding by experimental data into the binding pocket, as
described in section 4.3. The model was then subjected to a
constant temperature MD run with positional constraints on
the helix backbone atoms and a subsequent simulated
annealing protocol applied to the side chains of the ligand
binding pocket. Five structures were extracted from these
simulations and the best snapshot was selected based on the
quality of crude CoOMFA models derived from docking poses
of known agonists. This final model was used to derive three
different pharmacophore models: one based on the pharma-
cophoric points of known agonists in the receptor model, a
second model based on the binding cavity of the docked
ligands, and a third model based on the combination of
features taken from both the receptor and bound ligands.

Tikhonova et al. identified new agonists for the free fatty
acid receptor 1 (FFARI1) [27]. The putative binding cavity
[40] of an initial FFAR1 model, derived from the bRho
crystal structure, was subjected to MC simulation [152].
Representatives of 12 structural clusters from the MC-
trajectory were selected according to the orientation of
charged residues in the binding pocket and used for auto-
mated docking studies of a known agonist. Docking results
in combination with solvent accessible surface area analysis
and molecular interaction field analysis of the binding pocket
and amino acid sequence analysis, were used to generate
binding mode hypotheses which were then experimentally
corroborated by SDM studies [152]. The model best in line
with the SDM data was further refined by MC and QM
energy minimization to optimize a part of the receptor-ligand
complex. An initial database of ca. 2.6 million compounds
was reduced to 70 477 molecules by a topological filter [27].
This set of compounds was docked into the refined receptor
model and also subjected to a 3D pharmacophore search
based on the refined receptor-ligand complex. From the
docking simulations 3 131 compounds were selected ranked
by a docking scoring function, while 1 581 compounds
passed the pharmacophore filter. From these hit lists com-
pounds were clustered by chemical diversity and visually
inspected. From the subset of 183 compounds obtained both
by docking and the pharmacophore search, 32 compounds
were selected, appended by 10 unique compounds from each
of the different hit lists. Experimental testing identified six
active compounds, of which five displayed agonistic activity
with ECs values around 10 uM. One of the confirmed hits
was only identified by docking and another one only selected
by the pharmacophore search, while four hits were found by
both methods.
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Kiss et al. [29] found new ligands for the histamine H4
receptor (HRH4). Receptor models based on the bRho
crystal structure were separately refined in the presence of
known agonists and antagonists [86]. These optimized
models, as well as a set of ligand-free receptor models were
challenged by a docking-based virtual screening study. The
highest enrichment of known antagonists and agonists in the
top-ranked scorings lists was achieved by the agonist-bound
model (Fig. (8)) and these enrichments increased further
when the docking simulation was guided by a receptor-
ligand interaction pharmacophore constraint. This model was
later used in a prospective VS study [29]. A large database of
5066 235 compounds were all docked into the validated
receptor model and ranked using an optimized scoring
functions combination [86]. The top 2 000 hits were visually
inspected, discarding poses having a wrong tautomeric state
and not positioned in the binding cavity and preferring
compounds showing experimentally supported receptor-
ligand interactions, yielding a final list of 128 compounds of
which 66 were purchased. The top 45 000 ranked docking
poses were automatically filtered consi-dering a specific
receptor-ligand interaction, clustered by chemical diversity,
yielding a selection of 229 compounds of which 189
(including 23 analogues) were purchased. Out of the total of
250 biologically tested compounds 16 com-pounds showed a
significant (> 20%) displacement of 10n M [°H]--histamine
at a5 uM concentration (Fig. (8)).

Jones et al. [25] identified C-X-C chemokine receptor
type 7 (CXCR7) agonists. A homology model was derived
from bRho and customized by twisting TM6, like described
in section 4.3. A database containing an unknown number of
compounds was docked into this model and 1000 com-
pounds were selected based on docking score and chemical
diversity criteria. Of these, 392 compounds were available
for screening and two of these were experimentally confir-
med to have agonist activity at high concentrations (ca. 100
uM).

Engel et al. found new antagonists of thyrotropin-
releasing hormone receptors (TRFR1/2) [28] using an
agonist-biased receptor model (Fig. (8)). A homology model
of TRFR1 based upon a 3D projection map of bRho [155]
was refined and validated by numerous prospective experi-
mental studies. An initial database of ca. 1 million com-
pounds was first screened using a receptor-based pharma-
cophore model derived from the refined and validated
receptor-agonist complex, yielding a hit list of ca. 100 000
compounds from which 10% was selected based on chemical
diversity. These ca. 10 000 molecules were then docked to
an ensemble of five different receptor structures, considering
flexibility of the binding pocket. The top 10% ranked
compounds were again clustered by chemical diversity and a
final selection of 100 compounds (appended by several
related compounds identified by a nearest neighbour search)
were tested experimentally. Eight com-pounds were experi-
mentally confirmed to be TRFR1 antago-nists (no agonists
were found), including five structurally diverse chemical
classes.

The recently published carazolol-bound ADRB?2 crystal
structure has recently been used for prospective virtual
screening by Sabio et al. [156]. In-house proprietary and
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commercial databases of ca. 400 000 and 4 million com-
pounds were docked in the ADRB2 crystal structure and
scored with a single docking scoring function. Out of 150
tested compounds, 8 exhibited micromolar, and 23 sub-
micromolar Ki values (of which 4 in the subnanomolar
range). Most of the reported virtual hits were however
chemically similar to carazolol (Fig. (8)).

Becker et al. [49] described the use of (crystal structure)
template-independent models generated by the de novo
Predict method [8]. The top 10% of an initial database of 1.6
million compounds passing a receptor-specific topological
filter was docked into 3D models of three aminergic recep-
tors (5-hydroxytryptamine 1A (5HT1A), 5-hydroxytryp-
tamine 4 (5HT4R), and dopamine D2 (DRD?2)), the peptide
receptor NK1R, and the chemokine receptor type 3 (CCR3)
and rescored using several scoring functions. A series of cut-
off values for each score was used to reduce the size of the
hit list. The remaining compounds were then filtered by
using 3D principle component analysis based on the 3D
properties of docked solutions. Molecules describing the
same 3D space as known ligands were finally retrieved and
clustered by diversity, yielding a list of ca. 100 represen-
tative virtual hits for each receptor. Hit rates between 12 and
21% were reported at a 5 micromolar cut-off for four
(5HT1A, 5HT4, DRD2, NK1R) out of five targets (see
Table 1).

In most of the studies described above, the final hit
selection is performed by scoring and post-processing recep-
tor-ligand docking poses (steps 2-6 in Fig. (8)). In some
cases [23, 27, 50, 150], models of receptor-ligand complexes
have been used to construct pharmacophore models and/or
derive exclusion spheres for pharmacophore searches (step 7
in Fig. (8)). Whereas ligand-based models can only reveal
binding features which are already present in the reference
ligands, the inclusion of complementary information from
the receptor cavity allows for a n understanding of the
molecular recognition process [142]. In fact, some of the hits
found in the structure-based VS runs have been successfully
optimized by structure-based design, similarity searches, and
analysis of the receptor-ligand docking pose. Comparative
docking studies of a 5SHT1A VS hit (Fig. (8)) in models of
the SHT1A and ADALA receptors, as well as the hERG ion
channel were used to design analogues with higher
selectivity for 5SHT1A over ADA1A and reduced affinity for
hERG [48]. Fragments of an initial VS hit found for CCR5
(Fig. (8)) and a known CCR5 antagonist were assembled to
design an antagonist with higher affinity [153]. Similarity
searches were performed to find close neighbors of experi-
mentally confirmed VS hits for FFARL (Fig. (8)), and these
analogues were used to derive structure-activity relation-
ships and further validate the receptor model [27]. Nearest
neighbour and pharmacophore model searches were also
performed based on initial VS hits for the MCHR1 receptor
(Fig. (8)), resulting in many additional hits for this receptor
[50]. Similarity analysis was also used to identify more
agonists based on an initial hit found by structure-based VS
in CXCRY [25]. Predicted ligand stereoselec-tivity (Fig. (8))
and roles of ligand binding residues in TRFR1 were
experimentally corroborated to further validate the receptor
model [28].
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6. CONCLUSIONS

The last two years have brought the scientific commu-
nity high resolution structural details on how a diffusible
ligand is recognized by various class A GPCRs. In some
cases (ADRB2, ADRB1), the experimentally-dertermined
binding mode of the small molecular-weight ligand has not
been a real surprise to experienced GPCR modelers because
of the high directionality of protein-ligand interactions and
the massive amount of previously-known experimental data
on analogous ligands. In one case (AA2AR), the binding
mode was almost impredictable from known data and might
suggest inexperienced modelers that predicting fine details
of GPCR-ligand interactions is out of reach. The peculiar
nature of the Adenosine A2A receptor, notably the
exceptional features of its second extracellular loop makes
this example more an exception than the rule. The recently-
described structure of the ligand-free opsin also provides
interesting hints for ligand entry and exit from the TM cavity
that may be common to many liphophilic GPCR ligands. The
availability of multiple structures of the 7-TM helical bundle
will undoubtedly facilitate the modeling of sequence-specific
structural features of future GPCRs (bents, kinks). Unfor-
tunately, it has not been possible yet to achieve this level of
fine molecular details with receptors in an activated state.
Therefore, the structure-based rational design of partial/full
GPCR agonists still remains a difficult task in which
experimental data are of utmost importance to restrict the
number of possible models. We also anticipate that other
ligand-binding sites (e.g. allosteric sites [157], receptor
dimers [158] , G-protein interface [159, 160]) will be inves-
tigated in a near future to provide alternative solutions in the
design of GPCR-regulating bioactive com-pounds.

ABBREVIATIONS

GPCR = G protein-coupled receptor

™ = Transmembrane helix

bRho = Bovine rhodopsin

ADRBl1 = Beta 1 adrenergic receptor

ADRB2 = Beta 2 adrenergic receptor

AA2AR = A2A adenosine receptor

Ops* = Ligand-free opsin

EM = Energy minimization

MD = Molecular dynamics

CRFR1 = Corticotropin-releasing factor receptor 1
ecl = Extracellular loop

SDM = Site-directed mutagenesis

SAR = Structure-activity relationships
S1PR1 = Sphingosine 1-phosphate receptor 1
VS = Virtual screening

IFP = Interaction fingerprint
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