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Abstract: This review will focus on the construction, refinement, and validation of G Protein-coupled receptor models for 
the purpose of structure-based virtual screening. Practical tips and tricks derived from concrete modeling and virtual 
screening exercises to overcome the problems and pitfalls associated with the different steps of the receptor modeling 
workflow will be presented. These examples will not only include rhodopsin-like (class A), but also secretine-like (class 
B), and glutamate-like (class C) receptors. In addition, the review will present a careful comparative analysis of current 
crystal structures and their implication on homology modeling. The following themes will be discussed: i) the use of 
experimental anchors in guiding the modeling procedure; ii) amino acid sequence alignments; iii) ligand binding mode 
accommodation and binding cavity expansion; iv) proline-induced kinks in transmembrane helices; v) binding mode 
prediction and virtual screening by receptor-ligand interaction fingerprint scoring; vi) extracellular loop modeling; vii) 
virtual filtering schemes. Finally, an overview of several successful structure-based screening shows that receptor models, 
despite structural inaccuracies, can be efficiently used to find novel ligands. 
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1. THE USE OF RECEPTOR MODELS IN 

STRUCTURE-BASED VIRTUAL SCREENING FOR 
GPCR LIGANDS 

 G-protein-coupled receptors (GPCRs) constitute a large 
family of heterogeneous membrane receptors characterized 
by a typical heptahelical membrane-spanning fold usually 
described as a seven-transmembrane (TM) domain [1, 2]. A 
striking feature of this protein family is the tremendous 
chemical diversity of possible ligands including light, small 
molecular-weight ions (e.g. glutamate, Ca2+), biogenic 
amines (e.g. dopamine, serotonin), nucleosides and nucleo-
tides (e.g. adenosine, adenosine triphosphate), peptide and 
protein hormones (e.g. chemokines, glucagon), lipids and 
eicosanoids (e.g. sphingolipids, prostaglandins) [3]. 
Activation of GPCRs upon binding of the above-mentioned 
ligands induces a conformational change of the receptor, 
thereby triggering a specific interaction with intracellular G 
proteins and subsequent activation/ inhibition of secondary 
messengers [4]. Because of the ubiquitous distribution of 
GPCRs at the surface of many cells, these receptors are 
regulating a wide array of physiological and pathological 
processes. As a consequence, GPCRs are particularly 
attractive targets for therapeutical intervention. Hence, about 
30% of top-selling drugs modulate the activity of this family 
of receptors [3]. Up to now, few GPCRs (ca. 40) have been 
targeted by existing drugs. Analyzing human genomic 
sequences suggests the existence of about 400 nonolfactory 
GPCRs [5] and opens a new avenue for drug discovery,  
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especially with respect to the 100 orphan receptors for which 
even the endogenous ligand still has not been characterized 
[6]. 

 Knowledge of the three-dimensional structure of GPCRs 
can provide important insights into receptor function and 
receptor-ligand interactions, and can be used for the disco-
very of new drugs. So far structural modeling of GPCRs has 
been limited to either ab initio models [7, 8] or bovine 
rhodopsin (bRho)-based [9] homology models. Recently, 
crystal structures of squid rhodopsin, the beta adrenergic 
receptors type 1 (ADRB1) and 2 (ADRB2), the A2A adeno-
sine receptor (AA2AR), and the ligand-free opsin (Ops*) 
were solved [10-16]. Although most of these crystal struc-
tures are relatively homologous in the trans-membrane (TM) 
binding cavity, the differences might however be large 
enough to influence the outcome of structure-based virtual 
screening [17]. In fact, the binding mode of the antagonist 
co-crystallized with AA2AR [12] deviates dramatically from 
previous computer models [18, 19], while ligand binding 
modes in earlier ADRB2 models (e.g., [20, 21]) are 
generally in agreement with the inverse agonist and 
antagonist-bound crystal structures of this receptor [10, 11]. 
Furthermore the structural divergence between the GPCR 
crystal structures appears to be much larger in the intra-
cellular regions as well as the extra-cellular loop regions of 
the receptors [10, 12]. Comparing the inactive bRho to the 
active Ops* structure suggests ligand-induced conforma-
tional changes [13, 14], while comparison of different 
ligand-bound ADRB1 and ADRB2 structures show small 
subtle rotamer changes to optimize receptor-ligand interac-
tions [11, 16]. Careful and critical receptor modelling 
strategies, guided and validated by experimental data, are 
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therefore still needed to construct receptor models which can 
be used for structure-based virtual screening. 

 It has been stated before that the ground state of ADRB2 
and bRho crystal structures are only suitable for discovering 
inverse agonists and antagonists [20, 22]. Recent virtual 
screening studies have shown however, that agonists can be 
retrieved by using receptor models based on inactive crystal 
structure templates [23-27], and, vice versa, antagonists have 
been found using agonist-biased receptor models [24, 28, 
29]. Moreover, a recent study showed that it is even feasible 
to model early intermediate states in agonist binding, based 
on the inverse agonist bound crystal structure of ADRB2 
[30]. Thus the appearance of more GPCR crystal structures 
can help to push computer-aided drug design studies towards 
more challenging predictions. 

 Although insights into the molecular mechanisms of 
ligand-induced receptor activation derived from compu-
tational studies [31-33] can be valuable for the design of 
specific ligand types (i.e. agonist vs. antagonists), the current 
paper will focus on the use of three-dimensional receptor 
models for predicting ligand binding, and enabling structure-
based virtual screening studies in particular.  

2. A MODELING WORKFLOW FOR TAILOR-MADE 
GPCR MODELS  

 Considering the apparent flexibility of GPCRs and the 
diversity in ligand types, binding pockets, and binding 

modes, GPCR models should be tailor-made, using all 
possible experimental data to guide their construction and 
validation along different modelling steps. Furthermore it 
should be acknowledged that the quality and applicability of 
GPCR models strongly depends on the amount of experi-
mental data available to construct and validate them, more 
than on the exact modelling programs and techniques via 
which they are constructed. In Fig. (1) a typical GPCR 
modeling workflow is presented to construct GPCR receptor 
models.  

 In short, the GPCR modeling workflow follows seven 
steps: 1) Construction of the initial receptor model, 
consisting of the 7 transmembrane (TM) helices only, after 
identification of the TM helices (template-independent de 
novo modeling), amino acid sequence alignment between 
target and template receptors (homology modeling), and by 
rotation/de novo modeling of certain TM helices with 
putative alternative helical kinks; 2) Construction of a 
preliminary TM-ligand complex; 3) Energy minimization 
(EM) of the TM-ligand complex; 4) Molecular dynamics 
(MD) simulation refinement of the receptor-ligand complex; 
5) Modeling the loops connecting the TM helices; 6) 
Selection and refinement of the full receptor-ligand com-
plex; 7) Validation of the full receptor-ligand complex.  

 Depending on the availability of experimental data and 
the purpose of the receptor model, alternative workflows can 
be followed. For example, if there are no experimental data 
available to guide the construction of extracellular loops, it is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). GPCR modeling workflow along the different steps (boxed numbers) described in the text.  
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advised to omit step 5 (see section 4.5). At the moment that a 
receptor model has been thoroughly evaluated and validated, 
it can serve as modeling template for constructing homo-
logous targets [34]. For example, a validated cotico-tropin-
releasing factor type 1 receptor (CRFR1) model is likely to 
be a better template to model future secretin-like (class B) 
GPCR models than less homologous bRho, AA2AR, or 
ADRB2 structure tem-plates. The selection of a proper 
template at the start of the modeling process (step 1 in Fig 
(1)) can be crucial and should be done with care, based on a 
preliminary analysis of the ligand binding pocket topo-
graphy and knowledge of the structural differences between 
the different available modeling templates. Therefore a 
thorough analysis of the different GPCR crystal structures 
will be presented in the following section 3. The different 
GPCR modeling steps will then be described in more details 
in section 4. 

3. Implications of GPCR Crystal Structures on GPCR 
Homology Modeling 

 With the exception of de novo GPCR models [7, 8] 
which are template-independent, most GPCR models have 
been derived from an experimental structural template (or 
from another receptor model initially derived from an 
experimental template). For many years, the crystal struc-
ture of dark-state retinal-bound bovine rhodopsin (bRho) [9] 
has served as a template to model GPCRs. In the past years, 
other ligand-bound bRho structures of higher resolution[35, 
36] as well as different photointermediates [37, 38] of 
generally lower resolution have appeared. These structures 
only showed significant structural changes in the intra-
cellular loops compared to the first bRho structure. The 
recently solved structure of the squid rhodopsin, on the 
contrary shows significant changes in the TM backbone 
compared to bRho, especially in TM2, as the result of a 
G2.59XP2.61 induced kink [15] (residues are numbered 
according to the Ballesteros-Weinstein nomenclature [39]). 
This motif is not present, however, in other non-olfactive 
human GPCRs. The large structural differences between the 
inactive bovine rhodopsin structures and the recently 
published ligand-free bovine opsin structures are primarily 
located in the intracellular regions, but are linked to 
structural rearrangements in the extracellular TM binding 
pocket as well [13, 14]. Around the retinal binding pocket, 
inward movements (towards the retinal binding pocket) of 
TM helices 2, 6, and 7 and an outward movement of TM3 
(away from the binding pocket) are observed in opsin 
compared to rhodopsin [13, 14]. Only recently were the first 
human GPCRs crystal-lized with a diffusible ligand 
(ADRB1[16], ADRB2[10, 11], AA2A [12]). Although the 
relative orientations of some TM helices differ from bRho 
(Fig. (2A)), the main structural differences around the ligand 
binding pocket stem from the extracellular loops (ecls), 
especially ecl2 (Fig. (2B,C)). Furthermore, the exact location 
of the ligand binding pocket varies between the bRho, 
ADRB1/ADRB2, and AA2AR crystal structures (Fig. (3)). 
Site-directed mutagenesis mapping of the ligand binding 
cavities of many other receptors also suggest a wide variety 
of binding site locations among GPCRs, and often also 
depending on the ligand itself (i.e. agonists vs. antagonists), 

although there seems to be at least a partial overlap between 
these sites (Fig. (3)). 

 Fig. (2) shows the structural divergence between GPCR 
crystal structures. In Fig (2A), the crystal structures are 
aligned on the C alpha atoms of 33 residues proposed to 
represent a consensus GPCR binding cavity [40], but for the 
bRho-ADRB2 alignment the positions of TM1 are not taken 
into account because of the large divergence in that region 
[10]. Compared to bRho, TM1 of ADRB2 and TM2 and 3 of 
AA2AR are highly divergent, while TM 6 and 7 of ADRB2 
and TM6 of AA2AR are similar. TM2 and 4 of ADRB2 and 
TM1, 4, and 7 of AA2AR are moderately constant. TM 3 
and 5 of ADRB2 and TM 5 of AA2AR are moderately 
divergent. The TM helices in bRho and all other GPCR 
crystal structures are far from ideal helices. Most of these 
deformations are induced by unusual proline-induced kinks 
stabilized by adjacent glycine and/or threonine/serine resi-
dues, resulting in some cases in local openings or closures of 
specific helical turns [41-43].  

 Thus, while the overall fold of most helices in the 
published GPCR crystal structures is relatively conserved 
(suggesting structural mimicry among GPCRs [43]) there are 
striking differences in some helical bends (described above) 
and relative orientations of some helices (Fig. (2)). These 
differences can often be explained by specific sequence 
motifs (P/G/T/S) and/or TM-TM interactions (e.g., the 
conserved H-bond between N1.50 side chain and the backbone 
carbonyl oxygen of residue 7.46) inducing and/or stabilizing 
kinks in the TM helices. Interestingly, different sequence 
motifs can induce the same kink (e.g., G2.56G2.57XT2.59T2.60 in 
bRho and P2.59XG2.61 in ADRB2) and in some cases, the 
orientation of TM helices seems to be affected by the 
conformation of extracellular loops as well. The top of TM3 
in AA2AR, for example, bends further towards TM4 (Fig. 
(2A)) by the two disulfide bridges between TM3 and ecl2 
(Fig. (2B)). In other cases, the fold around the TM cavity 
(i.e., the positions facing the ligand binding pocket) is often 
conserved despite differences in helical kinks (e.g. TM7). 
Although this makes the prediction of TM kinks based only 
on sequence motifs difficult [41], it should be stressed that 
the selection of the proper modeling template and/or model-
ing of alternative TM kinks can also be guided by experi-
mental data supporting and/or excluding the involvement of 
specific residues at the top of the helix. 

 Furthermore, the helical bundle of GPCRs is believed to 
be rather flexible, and it has been proposed that receptor 
activation is accompanied by rotation and/or translation of 
certain TM helices (notably TM6) to facilitate binding of the 
G-protein [32, 44]. In very recently solved crystal structures 
of opsin in the activated state (Ops*) [13, 14], of which one 
is bound to a peptide segment of the G -protein [14], several 
conformational changes in the TM helices are obser-ved 
compared to the bRho ground-state crystal structure [9]. The 
largest structural changes are located at the intracellular side 
where the G-protein binds, breaks the ionic lock [9] between 
R3.50 and E6.30 and relocate the intracellular regions of 
especially TM5 and TM6, as well as TM3 and TM7. This 
movement is however linked to structural rearrangements in 
the TM cavity at the extracellular side: i) TM5 and TM6 
move down (towards the intracellular side) and towards each 
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other, away from TM3 ii) the highly kinked TM7 helix 
bends towards TM2 and the relocated TM6; iii) the top of 
TM2 kinks towards TM3 which moves away from TM7. It 
has to be investigated, however, whether the opsin structure 
is a more suitable template for modeling the agonist bound 
state of other receptors. The C  to C  distances between 
positions 3.32 and 5.43, and between 3.32 and 6.52, residues 
experimentally found to be involved in agonist binding in 
ADRB2 [45], are significantly longer in the Ops* than in the 
ADRB2 crystal structure (6 and 4 Å longer, respectively), 
making Ops* probably an unsuitable template to construct an 
agonist-bound ADRB2 model. Consideration of the relative 
orientation and helical kinks, determining the position and 
direction of residues into (or out of) the ligand binding 
pocket, in potential modeling templates is therefore a very 
important first step in the GPCR modeling process. And in 
cases where experimental data suggest that the TM confor-
mation of the target is not captured by any of the available 
templates, it can be necessary to model this conformation 
(step 1 in the modeling scheme in Fig. (1)), as will be 
discussed in section 4.3. 

 Fig. (2B) shows how the second extracellular loop of 
bRho is folded deep into the TM binding pocket forming a  

sheet between  strands upstream and downstream from 
C45.50 (see [46] for sequence-independent numbering of ecl2 
residues). The ecl2s of ADRB2 and AA2AR are located 
more towards the extracellular side of the helical bundle, 
containing a long helix upstream from C45.50, and a  
strand (forming a  sheet with ecl1) upstream and a short 
helix downstream from C45.50, respectively. All three 
structures contain a conserved disulfide bridge between 
C45.50 in ecl2 and C3.25 in TM3. An additional disulfide 
bridge within ecl2 is present in ADRB2, while the ecl2 of 
AA2AR forms two additional disulfide bridges with ecl1. 
Analysis of the ecl2 of 325 GPCRs containing the conserved 
C3.25-C45.50 disulfide link shows that the upstream ecl2 
loop length (showing an optimum at 12–13 residues) is less 
variable then the downstream ecl2 loop length (showing 
optimum between 3 and 12 residues) [46]. Compared to 
bRho, many GPCRs have approximately the same number of 
residues upstream and downstream, but other GPCRs have a 
somewhat shorter or longer (e.g. ADRB2, AA2AR) 
upstream ecl2 loop, and/or significantly shorter (ADRB2 and 
AA2AR) or longer downstream ecl2 loop. Long upstream 
combination with short downstream ecl2 loops, like ADRB2 
and AA2R, are however relatively rare. Although bRho 
seems to be a relatively suitable modeling template for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Structural divergence between GPCR crystal structures. A) Comparison of the 7TM-bundle of bRho (light grey cylinders) [36] with 
that of ADRB2 (top, dark grey cylinders) [10] and AA2AR (down, dark grey cylinders) [12] . Ligands (retinal in bRho (light grey carbon 
atoms), carazolol in ADRB2 (dark grey), and ZM241385 in AA2AR (dark grey) are depicted by ball-and-sticks. B) Comparison of the 
extracellular loops 2 (ecl2) of bRho (light grey), ADRB2 (top, dark grey), and AA2AR (down, dark grey). Ligands are presented as in panel 
A. Disulfide forming cysteine residues as well as residues at position 45.52 are depicted by ball-and-sticks. C) Comparison of the ecl2 amino 
acid sequences of bRho, ADRB2, and AA2AR, along with their secondary structure (beta strands depicted by arrows, helical segments 
depicted by bars), disulfide bridges (grey lines), and residues involved in receptor-ligand contacts (underlined in bold). D) The number of 
ecl2 residues downstream from C45.50 plotted against the number of residues upstream from C45.50 for 325 GPCRs containing the 
conserved C3.25-C45.50 disulfide link [46].  
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modeling the upstream ecl2 segment, construction of ecl2 
however should be done with care and guided by receptor-
specific experimental data, rather than carried out in a high-
throughput fashion and derived directly from the bRho 
crystal structure [46]. Moreover, loop-less TM models of 
GPCR receptors can be suitable targets for virtual screening 
as well ([8, 46-50]. The implication of extracellular loop 
modeling (step 5 in Fig. (1)) on structure-based virtual 
screening will be discussed in more detail in section 4.5. 

 Experimental data such as site-directed mutagenesis 
(SDM) and ligand structure-activity relationships (SAR) data 
give insights into which residues in the receptor and which 
chemical groups in the ligand are involved in receptor-ligand 
binding. This information can be used to propose receptor-
ligand binding modes and to construct in silico models of 
receptor-ligand complexes. In this way, the binding modes of 
inverse agonists and antagonists hypothesized in earlier 
ADRB2 homology models based on bRho generally 
resemble the binding orientations of carazolol and timolol in 
the ADRB2 crystal structures [20, 21, 51]. The binding mode 
of ZM241385 in the recently solved AA2AR crystal 
structure [12], however, deviates significantly from the 
antagonist binding poses proposed in molecular modeling 
studies [18, 19]. The apparent success in ADRB2 and failure 
in AA2AR modeling is mainly the result of differences in the 
character and location of experimental anchors to construct 
receptor-ligand interaction hypotheses. 

 ADRB2 ligands share an essential positively charged 
amine as well as an aromatic ring separated by ca. 5 (in most 
partial/full agonists) to 7 Å (in most inverse agonists/ 
antagonists). This pharmacophore fits the binding pocket of 
the high-resolution ADRB2 crystal structure [10], in which 
both polar interactions (to D3.32, S5.42, N7.39) and edge-to-face 

 stacking (mainly to F6.52) contribute to strong directional 
constraints for receptor recognition. The binding mode of 
ADRB2-bound carazolol is in line with earlier site-directed 
mutagenesis studies, supporting the involvement of D3.32 [52, 
53], S5.42 [54], and N7.39 [55] in binding of both antagonist 
and agonists. Mutation of residues S5.43, S5.46, N6.55, and Y7.35 

affects partial/full agonist binding [56-58]. In the case of 
ADRB2, three polar residues located in three different TM 
helices, namely D3.32, S5.42, and N7.49, have been shown to be 
involved antagonist-ADRB2 interactions by SDM. The 
spatial distribution of these critical residues in a bRho-based 
ADRB2 homology model is quite close to that in the X-ray 
structure. Ligand-receptor binding modes are therefore 
relatively straightforward to predict by many docking tools 
(Fig. (3)).  

 Conversely, the recently described X-ray structure of 
AA2A in complex with the antagonist ZM241385 [12] was 
almost impossible to predict. Previous SDM studies had 
identified several polar anchoring residues, including N6.55, to 
be important for agonists and xanthine antagonist bind-ing 
[59, 60]. Mutation of Q3.37 had small but significant effects 
on binding of agonists, xanthine antagonists, and antagonists 
containing an adenine ring (like ZM241385) [60]. Further-
more, mutation of ecl2 loop residues differently affected 
agonist and antagonist recognition [61]. Modeling the ecl2 of 
AA2AR based from bRho is however quite challenging 
because of the large difference in number of downstream and 

upstream residues (Fig. (2C)). In fact, only one of these 
negatively charged residues (E45.53) interacts with ZM241385 
in the AA2AR crystal structure. The plausible H-bond 
interaction hypo-thesis between the exocyclic amine and 
N6.55 observed in the crystal structure is supported by the 
SDM data and was therefore proposed in many AA2AR 
receptor models as well [62]. Understandably, computational 
chemists have been tempted to match the other numerous 
polar H-bond acceptor and donor atoms in the ligand with H-
bond interaction partners in the receptor, but surprisingly, 
three polar interactions with the ligand are mediated via 
water molecules. The possible role of conserved internal 
water molecules in structure and function of GPCRs has 
been hypothesized [63], but this is the first report of water-
mediated receptor-ligand interactions. Furthermore, V3.32, 
F5.43, and H7.43, which are indicated by SDM data to be 
involved in antagonist binding [60, 64], are in fact not in 
close contact with ZM241385 in the AA2AR crystal struc-
ture. The use of these experimental anchors to guide the 
construction of a ZM241385-AA2AR complex would 
therefore have been misleading. In conclusion, the lack of 
directionality in receptor-ligand interactions for guiding the 
modeling of the receptor-ligand complex explains the 
difficulty of modeling AA2AR-anta-gonist interactions 
compared to ADRB2-ligand interactions.  

4. TIPS AND TRICKS TO CUSTOMIZE LIGAND-
BIASED GPCR MODELS 

 One of the most important aspects of any GPCR 
modeling protocol is the incorporation of as much experi-
mental data available to guide the construction of the 
receptor model at every step and as early in the modeling 
process as possible. Information on the involvement of 
certain residues in ligand recognition [65], the identifi-cation 
of essential chemical groups for ligand for binding, and the 
synthesis of these data into a preliminary ligand binding 
mode hypothesis can be used to: i) make rational decisions 
regarding the selection of the optimal modeling template and 
alignment of the target and template amino acid sequences 
(section 4.1); ii) refine the receptor and shape the ligand 
binding pocket (section 4.2); iii) model alternative helical 
kinks and orientations (section 4.3); iv) select and score 
receptor-ligand docking poses (section 4.4); v) model 
extracellular loops (section 4.5); vi) set up smart virtual 
screening strategies (section 4.6). 

4.1. Rationalizing Sequence Alignments 

 The first steps in GPCR modeling are the identification 
of the transmembrane helices and amino acid sequence 
alignment between target and crystal structure (or refined 
receptor model) template(s) (step 1 in Fig. (1)). Several 
algorithms have been developed to predict the rough location 
of the 7 TM helices [66]. While de novo GPCR modeling 
methods, like Predict [8] and Membstruck [7], do not require 
target to template amino acid sequence alignments as input, 
homology modeling does require such an alignment. Despite 
the relatively low sequence identity between the TM 
domains of rhodopsin-like (class A) GPCRs [67], there are 
several GPCR family-specific patterns and motifs [68] which 
facilitate their alignment [20]. The Ballesteros-Weinstein 
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Fig. (3). Diversity of GPCR-ligand binding pocket and binding modes in six different GPCRs, (bRho, ADRB2, AA2AR, sphingosine 1-
phosphate receptor 1 (S1PR1), metabotropic glutamate receptor 5 (GRM5), and corticotropin-releasing factor receptor 1 (CRFR1). Chemical 
groups in the ligands (retinal in bRho, S-carazolol in ADRB2, ZM241385 in AA2AR, S-FTY-720-P in S1PR1, fenobam in GRM5, and 
antalarmin in CRFR1) identified to be important for receptor binding by structure-activity relationship (SAR) studies (encircled) are linked to 
residues shown to be involved in receptor-ligand binding by site-directed mutagenesis (SDM) studies (indicated by a filled triangle if tested 
on the same chemotype, indicated by an empty triangle if tested on a different chemotype). Residues in contact with the ligand in the crystal 
structure (bRho, ADRB2, AA2AR) or receptor model (S1PR1, GRM5, CRFR1) are underlined in bold. The experimentally supported 
receptor-ligand binding modes can be used to guide the construction (steps 2-5 in Fig. (1)) as well as selection and validation of receptor 
models (steps 6-7) and are described in more details in the text. Notes: a) A Schiff base is formed between K5.43 and retinal; b) H-bond 
interactions between ZM241385 and water molecules in the binding pocket; c) Internal H-bond is an essential feature of fenobam analogues; d) 

orthogonal orientation of the substituted phenyl ring is an essential feature of CRFR1 negative allosteric modulators; e) manual rotation of 
F6.44 rotamer in bRho-based EDG1 model; f) different locations and rotameric states of Y3.40 in bRho-based (grey) vs. refined ADRB2-
based (black) model. 
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numbering scheme [39] is based on the presence of several 
highly conserved residues among class A GPCRs: N1.50 in 
TM 1 (1.30-1.59), D2.50 in TM2 (2.38-2.67), R3.50 in TM3 
(3.22-3.54), W4.50 in TM4 (4.40-4.62), P5.50 in TM5 (5.35-
5.60), P6.50 in TM6 (6.30-6.55), and P7.50 in TM7 (7.33-7.53). 
Previous sequence analysis and molecular modeling that 
incorporated experi-mental data such as creation of metal 
binding sites, disulfide cross-linking, and double revertant 
mutations, were successful in predicting helix ends and 
protein-protein interactions in bRho, which are also 
predicted for other class A GPCRs [43]. The GPCR crystal 
structures of bRho, ADRB2, and AA2AR share most of the 
positions facing the TM binding pocket [9, 10, 12], and most 
of these positions have also been identified to belong to the 
binding cavity by the substituted-cysteine accessibility 
method (SCAM) [43] or other SDM studies [40]. In fact, 
sequence similarity in TM cavity alignments can often be 
matched to conserved moieties in the ligands of these 
receptors [40, 69], and therefore can be used as a rational 
modeling template selection criterion (step 1 in Fig. (1)) 
instead of the overall TM sequence similarity. 

 While the alignment of most TM helices of class A 
GPCRs to the currently available GPCR crystal structure 
templates seems straightforward, there is still some debate 
on their alignment to class B and class C GPCRs. We have 
worked on class B as well as class C receptors and noticed 
that for some of the TM helices of these receptors alternative 
alignments to bRho have been reported [34, 70-78]. Our 
alignments and the experimental anchors used to support 
them are presented in Fig. (4). The alignment of class B 
GPCRs on the left in Fig (4A) is in agreement with inter-
helical interactions displayed in the CRFR1 model on the 
right: i) a putative R2.53-Q7.45 H-bond proposed for the 
parathyroid type 1 receptor (PTHR1) based on correlated 
effects in SDM studies [79], and further supported by SDM 
studies of various other class B receptors [79, 80]; ii) a 
hydrogen bond network between TM2 (R2.39, H2.43), TM3 
(E3.46), and TM6 (T6.37), which are all conserved among class 
B receptors shown to be important for either ligand binding 
[81] and/or functional activation [81-85]; iii) the relative 
locations of H3.51, and the 6.30-6.33 helical segment of 
PTHR1 as derived from the alignment, agrees with Zn(II)-
bridge linking studies [85]; iv) the formation of an H-bond 
between W4.50 and a polar residue at position 2.45 (N/H/S) 
(both conserved residues in class A and B GPCRs [67]), 
which are observed in bRho, ADRB1, ADRB2, and AA2AR 
crystal structures [9, 10, 12, 16]. Mutation of W4.50 in the 
growth hormone-releasing hor-mone receptor (GHRHR) 
greatly affects its stability [83]. Final arguments supporting 
the alignment of class B GPCRs to bRho concern the 
location of residues found to be involved in non-peptide 
binding as described in section 4.2 and illustrated in Fig. (3). 

 In Fig. (4B), residues in contact with ligands in the bRho 
[9] and ADRB2 [10, 11] (rhodopsin-like or class A GPCRs) 
crystal structures are marked and aligned with residues 
proposed to be involved in ligand binding based on SDM 
data in different class C GPCRs [72, 77, 84]). Site-directed 
mutagenesis studies suggest that the binding sites of Calhex 
231 and NPS-2143 to the calcium-sensing receptor (CASR) 
overlap but are not identical, as predicted by the corres-
ponding receptor model [72]. The class A to class C GPCR 

amino acid sequence alignment in Fig. (4B) and the corres-
ponding CASR model (as well the GRM5 model discussed 
later in section 4.2) are not only supported by SDM studies 
probing the receptor-ligand binding pocket, but also agree 
with experimental data supporting inter-helical interactions 
in the cytoplasmic TM regions of class C GPCRs [82]. 

 It should be noticed, however, that the same SDM data 
have often been used to propose and support different amino 
acid sequence alignments [72, 73] and/or ligand binding 
modes [86, 87]. A clear example of misinter-pretation of 
such experimental data is the deviation between the ligand 
binding mode in the recently published AA2AR crystal 
structure [12] and the earlier reported computational models 
[18, 19] as discussed in the previous section 3. Furthermore, 
there are numerous studies in which the effects of site-
directed mutations have been found to be ligand-dependent, 
discriminating not only between different ligand types (i.e. 
agonists vs. antagonists [56, 59]), but also between different 
chemotypes with the same pharmacological effect [72, 75, 
88, 89]. Although such detailed information can be used to 
further refine and challenge receptor models, it should also 
be considered as a warning for over-interpretation of the 
receptor model by retrospective analysis. 

 The best one can do is to satisfy and use as many 
experimental constraints as possible to construct and validate 
the model (and not only those features which are line with 
the modelers preconceptions) at the earliest possible stage 
[90]. Moreover, receptor models should be applied and 
challenged by prospective predictions. In fact, we believe 
that the strength and added value of GPCR models especially 
lies not only in mapping ligand-binding sites but also in 
identifying new ligands from large chemical databases, as 
supported by the many prospective virtual screening success 
stories presented in section 5. 

 Aligning the amino acid sequences of the extracellular 
loops of GPCRs is obviously less straightforward (step 5 in 
Fig. (1)) [46], especially given the larger structural diver-
gence in these regions when comparing GPCR crystal 
structures (Fig (2)). However, also in this case it might be 
possible to use small loop segments of GPCR crystal 
structures for construction of the loop of the target, but only 
if this is supported by strong additional experi-mental data 
[46], as discussed in section 4.5. Finally, even when the 
amino acid sequence alignment between target and template 
is established, alternative kinks in the TM helices should 
sometimes be considered (section 4.3). 

4.2. Customizing Ligand-Biased GPCR Cavities  

 Figure (3) shows how receptor-ligand binding mode 
hypotheses can be derived from and/or rationalized by 
ligand-based (SAR) and receptor-based (SDM) experi-
mental data. Ligand binding modes in bRho, ADRB2, and 
AA2AR crystal structures have already been described in the 
context of SDM data in section 3. Below will follow a 
description of the ligand binding orientations in models of 
S1PR1 (a lipid/class A receptor), GRM5 (a glutamate-
like/class C receptor), and CRFR1 (secretin-like/class B 
receptor) and how experimental data are used to guide their 
construction and validation. 
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 Essential features of S1PR1 ligands are negatively 
charged and positively charged groups in the polar “head” as 
well as a long hydrophobic “tail” [91]. SDM data suggest 
that the S1PR1 receptor binds its ligands through the con-
served residues R3.28 and E3.29 [92]. The negatively charged 
phosphate oxygens of S-FTY-720-P [93] forms an ionic link 
to positively charged R3.28 residue, while the positively 
charged protonated amine of the ligand makes a salt bridge 
to the carboxylate moeity of E3.29. The hydroxyl group of S-
FTY-720-P interacts with one of these carboxylate oxygens 
via another H-bond. The essential aromatic ring of S-FTY-
720-P [91] stacks between the aromatic rings of W6.48 and 
F3.33, while the apolar alkyl chain of the ligand dives down 
into the relatively deep hydrophobic channel between trans-
membrane helices (TMs) 3, 4, 5, and 6 (subpocket i [40]). 
Many residues lining this hydrophobic channel (among 
which F5.47, F6.44, and W6.48) have recently been identified to 
be involved in ligand binding and receptor activation in 
S1PR1 [94]. Residue L6.55 at the top of TM6 makes a 
hydrophobic contact with the aromatic ring of S-FTY-720-P 
as well. Mutation of this residue into a phenyl-alanine only 
slightly affected the potency of S-FTY-720-P in S1PR1 [95]. 

 Negative allosteric modulators of GRM5 are medium-
sized molecules with terminal polar and apolar ring systems 
connected by a rigid straight linker [96]. SAR studies 

indicated that the internal H-bond in fenobam and its 
analogues (keeping the linker straight) is essential for their 
potency [96]. The ligand pharmacophore corresponds to a 
binding mode in line with SDM data [75], in which fenobam 
binds deep down in the TM binding pocket forming an 
essential H-bond with S3.39 [75] (an unusual ligand binding 
residue position in GPCRs [40]) and positioning its 
hydrophobic aromatic ring in a hydrophobic pocket between 
P3.36, Y3.40, T6.44, and W6.48 [75]. The latter residue forms an 
aromatic cluster with F6.51 and Y6.55, shown to be involved in 
receptor activation [75]. Residue A7.47 whose mutation 
diminishes fenobam binding, is modeled close to the pro-
posed ligand binding pocket as well and might be involved 
in ligand entrance between TM 1 and 7, one of the putative 
retinal entrance channels for bRho/Ops* [13], or have an 
indirect role in stabilization of the pocket. Mutation of 
residue R3.29, in the direct proximity of Y6.55, also has a small 
effect on fenobam potency, while mutation of L5.43 only 
affects binding of another negative allosteric modulator [75].  

 The CRFR1 antagonist pharmacophore is a hetero-cyclic 
ring bearing a critical hydrogen-bond acceptor nitrogen and a 
orthogonal aromatic ring [97]. CRFR1 ligands are highly 
hydrophibic (polar substitutions of the pendant ring are not 
tolerated [97]) and the orthogonal orientation of the aromatic 
ring systems is essential [98]. In the CRFR1 receptor model, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The use of experimental anchors to guide GPCR TM sequence alignments (step 1 in Fig. (1)). A) Amino acid sequence alignment 
between the TM domains of class B receptors and bRho. The alignment on the left is in line with interhelical interactions displayed in the 
CRFR model on the right (see text). B) Amino acid sequence alignment between the TM domains of class C receptors, bRho, and ADRB2. 
Residues in contact with ligands in the bRho and ADRB2 crystal structures are marked and align with residues proposed to be involved in 
ligand binding based on SDM data (metabotropic glutamate receptors 1 (GRM1) and 5 (GRM5, see also Fig. (3)) the calcium-sensing 
receptor (CASR)). Carbon atoms of residues in the CASR pocket identified by SDM to be involved in binding of the specific ligand are 
coloured dark grey, residues which are not important for binding of the ligand are coloured light grey. 
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the sp2-hybridized nitrogen in the heterocyclic ring of 
antalarmin forms a hydrogen bond with the protonated 
imidazole nitrogen of H3.36, while the orthogonally oriented 
aromatic rings, in line with X-ray and NMR ligand confor-
mation studies [98, 99], fit in an “aromatic cage” between 
H3.36, Y3.40, Y5.43, M5.47, Y6.48, and F6.52. Site-directed muta-
genesis studies have indeed identified H3.36 [100] and M5.47 

[88, 100] to be involved in interactions with non-competitive 
antagonists. 

 In our GPCR modeling protocols, we have used the 
above described binding mode hypotheses as experimental 
anchors to guide the refinement of 3D receptor models, 
shaping the binding pocket into a proper mould for structure-
based virtual screening studies along the different steps in 
the GPCR modeling process (steps 1-5 in Fig. (1)). Already 
the selection of the modeling template (step 1) can be driven 
by such experimental anchors, by considering for example 
TM-TM distances (Fig. (2A), section 3), helical kinks 
(section 4.3), and extracellular loop confor-mations (Fig. 
(2B), section 4.5). For the construction of the GRM5 model, 
for example, we used ADRB2 as a modeling template 
because in this structure the distance between TM3 and TM6 
at the intracellular side of W6.48 is just large enough to 
accommodate fenobam (Fig. (3)), while the bRho structure is 
not compatible with this constraint [101]. Initial docking 
studies of known ligands in the receptor model have been 
guided by pharmacophore constraints [23, 30, 46, 50, 102-
104] to satisfy experi-mentally determined (or hypothesized) 
receptor-ligand interactions and sometimes requires manual 
changes of rotameric states of residue sidechains. For 
example, the construction of a S1PR1 model required to 
rotate F6.44 side chain to accommodate the binding of the 
long aliphatic tail of S-FTY-720-P (Fig. (3)). Pharmacophore 
and/or other geometrical constraints linking atoms or groups 
between receptor and ligand or within receptor or ligand 
themselves (e.g., distance and angle constraints to satisfy a 
specific H-bond) have been included in energy minimization 
and MD/MC refinement procedures (steps 3-5) as well [30, 
46] to satisfy experimental data. Such MD/MC simulations 
are generally performed in a fully hydrated phospholipid 
bilayer [46, 105, 106]. As a result of such a refinement 
protocol the shape of the binding pocket as well as the 
orientation of key residues are adapted to a known ligand in 
an experimentally supported binding mode. It should be 
noticed that not only modeling of the TM cavity, but 
(especially) also loop modeling requires experimental 
constraints (step 5 and discussed in more detail in section 
4.5). Receptor binding pocket expansion procedures without 
the presence of a ligand have also been described [107], but 
only few GPCR models applied for virtual screening (VS) 
have not been optimized in the presence of a known ligand. 
However, it should be stated that there is a danger to bias a 
ligand-binding cavity towards a single chemotype if too 
many constraints are given as input. Conformational samp-
ling of the receptor structure affords the selection of 
conformers able to accommodate known ligands according 
to experimental data and discriminate them from non-
binders. In several GPCR modeling studies, alternative 
conformations of the receptor (refined in the presence of 
different ligand and/or different cluster representatives from 
MD or MC trajectories) have been i) tested by retrospective 

virtual screening to select the “best” model for prospective 
VS [50, 86], ii) used as an ensemble during the actual VS run 
[28, 105], or iii) considered as different states of the receptor 
and used to identify different ligand types [20, 24, 30]. 
Similar ligand-receptor interaction steered GPCR modeling 
strategies as described above like Mobile [108] and RED 
[50] are presented in section 5. 

4.3. Questioning Kinks: Alternative Conformations and 
Orientations of TM Helices 

 In principle, the receptor refinement protocols (steps 2-5 
in Fig (1)) described in section 4.2 aims at refining not only 
the side chains but also the backbone conformation of the 
receptor to shape the binding pocket to an experi-mentally 
defined ligand-receptor binding mode. It is however 
questionable whether large backbone changes, associated to 
high energy barriers, can be sampled by MD or MC simu-
lations. Therefore, alternative TM kinks and orientations 
should probably be considered at an earlier stage (step 1 in 
Fig. (1)) as well.  

 As discussed in section 3, many of the structural 
differences between the helical bundles in GPCR crystal 
structures can be explained by specific sequence motifs 
(involving Pro/Gly/Thr/Ser residues) and/or TM-TM inter-
actions which induce and/or stabilize helical kinks. The 
prediction of TM kinks based only on sequence motifs [41], 
however, can be rather difficult and it is very unlikely that all 
TM conformations are already covered in the set of currently 
available GPCR crystal structures. Moreover, it has been 
demonstrated that kinks may be reminiscent of ancestral 
features which disappeared along evolution [109]. 

 Nevertheless some attempts have been made to model 
alternative helical kinks, guided by experimental data 
supporting the involvement of specific residues in ligand 
binding, but not facing the ligand binding pocket in initial 
receptor models based on bRho (or any other GPCR crystal 
structure) [7, 8, 20, 23, 26, 110, 111] (step 1 in Fig. (1)). The 
best way to test alternative TM conformations, however, is 
to challenge them in retrospective, or even better, prospec-
tive structure-based virtual screening experiments as the ones 
described below. 

 For the construction of receptor models of the CCR5 
receptor (a chemokine receptor, rhodopsin-like GPCR class) 
and of CRFR1 (secretin-like GPCR) we have consi-dered 
alternative helical kinks, which improved prospec-tive and 
retrospective virtual screening results, respec-tively. The 
T2.56XP2.58 motif in CCR5 and other chemokine receptors has 
been proposed to induce an alternative kink in TM2, as 
supported by SDM data probing the TM2-TM3 interface 
[111] and receptor-ligand interactions [89, 112, 113]. This 
alternative kink directs the residue at position 2.60 (Trp in 
most chemokine receptors) into the binding pocket, instead 
of towards the membrane layer as in the bRho, ADRB2, and 
AA2AR crystal structures. We were able to identify new 
CCR5 agonists by structure-based virtual screening using a 
CCR5 model containing this alternative TM2 kink [26], but 
not with a model based on bRho. Analogously, Secretin-like 
receptors presents two conserved proline residues (P5.46, 
P6.42) on different posi-tions than rhodopsin-like receptors 
(P5.50 and P6.50). Site-directed mutagenesis studies in secre-
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tin-like receptors showed that P6.42 is important for receptor 
activity and ligand binding [114, 115]. In accordance with 
modeling studies on CCR5 (TM2 and TM3) [26, 111] and 
5HT1A (TM3) [110], we performed MD-simulations with 
model TM peptide stretches of the secretin-like receptor 
CRFR1, containing Ser, Thr, Pro, and Gly residues conser-
ved among secretin-like receptors and alanine at the other 
positions to determine the trends of helix bending for the 
different TMs. As the relative orientation of most intra-
cellular TM regions were shown to be in line with experi-
mental data (see section 4.1) these regions were used to fit 
the MD snapshots (Fig. (1)). Especially the extracellular top 
of TMs 5 and 6, which surround the postulated non-peptide 
ligand binding pocket in secretin-like receptors, show 
divergent TM bending compared to bRho and ADRB2 (Fig. 
(5)). Interestingly, a retrospective virtual screening accuracy 
of the alternative TM-reoriented CRFR1 model was signi-
ficantly higher than the accuracy of bRho-based and 
ADRB2-based models. The ligand binding pocket of the 
TM-reoriented CRFR1 model is discussed in more detail in 
section 4.2. 

 Salo et al. [23] modeled an alternative conformation of 
TM2 of the cannabinoid CB2 receptor (CNR2) to position 
residue C2.59, which is found to be facing the ligand binding 
pocket of CNR2 based on experimental data [116] but is 
directed towards the membrane in bRho and other GPCR 
crystal structures. The kink in the TM2 of bRho induced by 
the G2.56G2.57 motif was straightened, position 2.57 in CNR2 
was aligned to position 2.58 of bRho. TM5 was modeled as a 
straight helix (like in a previous CNR1 model [117]), 
because this helix does not contain a proline residue at 
position 5.50 which induces a kink in bRho and all other 
GPCR crystal structures and because the location of residue 
Y5.39 in a straight helix more consistent with experimental 
data [23]. The receptor model was refined by MD and 
subsequently successfully used to retrieve a new CNR2 
agonist, as described in more detail in section 5. 

 In one of the earliest reported retrospective VS studies 
[20], the TM6 helix in bRho-based models of the adrenergic 
beta 2 (ADRB2), dopamine D2 (DRD2), and delta opioid 
(OPRD) receptors was rotated counter-clockwise from 30o 
(when viewed from the extracellular domain), to model the 
active state of the receptor (based on what was known at that 
time regarding the activation of bioaminergic receptors [4]). 
These models were further refined in the presence of sets of 
known agonists manually docked according to experimental 
data and successfully used to retrieve known full agonists 
with hit rates very similar to those previously observed for 
antagonists in inactive state receptor models [20]. The same 
approach was used by others to construct an agonist-bound 
model of the orphan C-X-C chemokine receptor type 7 
(CXCR7) and successfully applied this model to find 
agonists for this receptor [25]. Recently the inactive inverse 
agonist bound ADRB2 crystal structure [30] was customized 
to enable selective retrieval of full and partial agonist by 
retrospective VS. Instead of rotating TM helices, only minor 
conformational changes (rotation of two serine residues 
known to specifically H-bond to full/partial agonists) were 
required to model what probably represents an early inter-
mediate state in agonist binding (Fig. (6)). Rearrangement of 
the receptor-agonist binding mode via either a rotamer toggle 
switch [31] or rigid-body shifts of see-saw motions of 
transmembrane segments [32] probably involves confor-
mational changes like bending [31, 118] and/or rigid body 
movements [32, 119] of TM helices which are likely to be 
ligand-dependant and therefore difficult to predict. 

 As an alternative, fully template-independent de novo 
GPCR modeling approaches such as Predict [8] and Mem-
bstruck [7] can be used to model alternative TM orien-
tations and kinks. Predict [8] is a multi-step computational 
protocol that identifies TM sequences, proposes alternative 
packing geometries for the seven helices (decoys) into 2D 
space, optimizes the relative rotational orientation of the 
helices, converts the most likely decoys into a simplified 3D 
representation, optimizes and clusters the best solutions, 

 

 

 

 

 

 

Fig. (5). The binding mode of antalarmin in different models of the CRFR1 receptor. A model in which the individual TM helices are 
modeled by MD (step 1 in Fig. (1), see description in text) and models derived by homology modeling from bRho and ADRB2 crystal 
structures. Important ligand binding residues in the CRFR1 pocket are depicted as balls and sticks. Hydrogen bonds are indicated by black 
dotted lines. On the far right panel: Enrichment in virtual screening of a focused database of 987 drug-like compounds (false positives, FP) 
and 13 known CRFR1 antagonists (true positives, TP) against: TM-reoriented (solid black line), ADRB2-based (dotted black line), and 
bRho-based (solid grey line) models of CRFR1. Docking simulations are performed with GOLD-Goldscore and docking poses are filtered 
and ranked according the Interaction fingerprint (IFP) topological scoring function [128]. The thin dashed black line represents the fraction 
of actives expected by random picking. 
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minimizes all-atoms models of each cluster repre-sentative 
and finally refines the most stable model by MD. Predict 
models have been successfully used to retrieve antagonists as 
well as agonists both in retrospective [8] and prospective 
[48, 49] virtual screening studies, as will be discussed in 
more detail in section 5. Membstruck [7] is another de novo 
GPCR modeling method which works according to a similar 
protocol as Predict. The program was used to construct both 
antagonist and agonist-based models of ADRB2, and an 
agonist-based model was able to discriminate known 
ADRB2 ligands from a database of decoys [47]. 

4.4. Docking Ligands into GPCR Models 

 Along the different GPCR modeling steps different 
alternative receptor conformations should be primarily be 
selected and challenged by their ability to accommodate 
known ligands in a binding mode satisfying experimen-tally-
determined receptor-ligand interactions. In the final valida-
tion step, one can test and apply the receptor not only for its 
ability to reproduce experimentally plausible ligand binding 
poses or to use the binding modes to explain and predict 
SAR and SDM data (structure-based design), but also to 
retrieve ligands from large chemical databases. The most 
widely used technique to predict receptor-ligand binding 
orientations in a rapid manner is molecular docking [120], 
which combines an algorithm to generate different docking 
poses with a scoring function to rank them. Selection of the 
most appropriate docking/ scoring protocols for binding 
mode prediction and structure-based virtual screening is very 
much dependent on physicochemical details of target-ligand 
interactions [121-124] and fine details of the protein 
structure [125, 126]. It is therefore necessary to evaluate 
different docking-scoring approaches or even to optimize 
scoring functions for protein/ligand training sets before 
applying them to unknown test cases. Post-processing strate-
gies for selecting and ranking docking poses have recently 
received much attention as an alter-native approach to solve 
the problem of protein-ligand docking and scoring accuracy 
[127].  

 In the past few years we have been using a topological 
scoring function (IFP) based on protein-ligand interaction 
fingerprints [128] for ranking docking poses in structure-
based virtual screening runs [30, 46, 129]. Receptor-ligand 
binding modes derived from known receptor-ligand X-ray 
structures [30, 128, 129] and/or supported by SAR/ 
pharmacophore and site-directed mutagenesis data [30, 46] 
can be used as IFP references. Docking low-molecular 
weight compounds, notably in open protein cavities (such as 
in GPCR receptor models lacking ecl2 on top of the TM 
binding pocket), can yield multiple different binding modes 
with comparable binding energies according to classical 
energy-based scoring functions [128]. Furthermore, omitting 
ecl2 from GPCR receptor models can provoke docking 
solutions of large, highly flexible “inactive” compounds that 
are artificially oriented into the unoccupied region [46, 103]. 
The IFP scoring protocol however, is able to discriminate 
between irrelevant ligand docking poses and docking poses 
comparable to that of known inverse agonists/antagonists 
[30, 46], and has even been successfully used to discriminate 
between inverse agonists/full antagonists and full/partial 
agonists [30], as exemplified in Fig. (6). 

 As previously reported [30] and demonstrated in Fig. (6), 
the topological IFP scoring function outperforms Gold 
scoring [130] in retrieving ADRB2 inverse agonists/ antago-
nists in the original crystal structure (e.g., timololol (A)) and 
is better suited for selectively retrieving agonists in the 
customized ADRB2 structure than Gold and Surflex scoring 
[131] (e.g., procaterol (B) and carvedilol (C)). Interestingly, 
the top-ranked pose of known ADRB2 ligands according to 
the native scoring function often has also one of the highest 
IFP similarity value. This means that the scoring functions 
perform relatively well in terms of binding mode prediction. 
The docking score itself of the ligand pose is however 
relatively poor, resulting in low rankings in the hit lists (Fig. 
(6D)). The poor scores of these poses stem primarily from 
steric rather than polar terms of the scoring functions. 
Interestingly, the IFP scoring function can easily overcome 
scoring problems associated with ligand confor-mational 
energies [132] or small changes in the protein conformation 
(ligand-induced fit) [126] even without fine tuning the 
settings of these docking programs. Post-pro-cessing poses 
by local/full energy refinement of the corresponding 
complex will partly solve the problem but not entirely unless 
ensemble docking is performed on a set of previously-
generated protein conformers. 

 Fig. (6) illustrates how IFP manages to distinguish 
partial/full agonists from inverse agonists/antagonists. R,S-
procaterol (panel B) and IFP reference R-isoproterenol (B,C) 
share most of their interactions with the customized ADRB2 
structure thus yielding a high IFP score despite a weak 
Surflex score and rank (D). The antagonist S-carvedilol (C), 
on the other hand, has a high docking score as it makes a 
high number of contacts with the receptor binding pocket. 
Like the R-isoproterenol reference, carve-dilol interacts with 
the three important serine residues on TM5 (S5.42, S5.43, 
and S5.46) but through a set of different interactions 
(hydrophobic contacts instead of H-bonds; panel D). While 
not affecting the Goldscore (carvedilol is ranked first), 
changing the type of molecular interactions to the receptor 
yields in a relatively low IFP score and ranking (D), as was 
also determined for almost all other inverse agonists/ 
antagonists docked in the customized ADRB2 structure [30].  

 The example of timolol also demonstrates, in agreement 
with a recent comparative evaluation of different virtual 
screening methods [133], that IFP scoring can be used for 
various scaffold hopping scenarios. Timolol and carazolol 
share the same 1-(isopropylamino)-3-aryloxy-propan-2-ol 
scaffold, but marked differences in the aryl moiety (Fig. 
(6A)) are disfavourable to a good 2D-similarity rank, while 
IFP scoring (as well as carazolol-based 3D-similarity 
methods) still rank timolol among the top scorers (Fig. 
(6D)). Alternatively, it was observed in the same study that 
when only disconnected fragments (maximum common edge 
subgraph MCE) are common to two ligands the 3D-
similarity ranking is logically affected, while IFP scores (and 
2D-similarity scores) are not [30]. 

4.5. Laying the Loops  

 As discussed earlier in section 3, bRho seems to be a 
relatively suitable modelling template for modelling the 
upstream ecl2 segment, while the long upstream in 
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combination with short downstream ecl2 loops of ADRB2 
and AA2R are relatively rare among GPCRs (Fig. (2C)). 
Nevertheless, the different extracellular loop structures 
displayed in the currently available GPCR crystal structures 
tell us to approach GPCR loop modeling (step 5 in Fig. (1)) 
with much caution and that it should be reserved for cases 
where loop building can be guided by experimental 
restraints, rather than carried out in a high-throughput 
fashion and derived directly from bRho (or any other GPCR 
crystal structure) [46]. The minimal experimental constraint 
imposed on modeling of the second extracellular loop should 
at least be the conserved disulfide bridge between TM3.25 
and C45.50, as derived from amino acid sequence align-
ments (section 4.1). For receptors lacking any of these 
cysteine residues, its is better to omit ecl2 from the model. 
Other experimental constraints, like H-bonds and contacts 
between the extracellular loop and the ligand (or other parts 
of the receptor) can be used at the loop modeling step itself 
[134] (step 5 in Fig (1)), and during the refinement of the 
loop conformation as described in section 4.2 (step 4). 

 For a set of GPCR targets, the dopamine D2 receptor 
(DRD2), adenosine A3 receptor (AA3R), and the throm-
boxane A2 receptor (TA2R), we have evaluated the impli-
cation of including ecl2 atomic coordinates in terms of 
structure-based virtual screening accuracy: the suitability of 
the 3-D models to distinguish between known antagonists 
and randomly-chosen chemically-similar decoys using 
automated docking approaches [46]. Explicit modelling of 
the ecl2 loop was found to be important in only one 
(AA3AR) out of three test cases whereas a loopless model 
was shown to be accurate enough in the two other receptors. 

Interestingly, the antagonist binding mode we proposed for 
AA3AR [46] is not in line with the binding orientation of 
ZM241385 in the recently reported crystal structure homo-
logous AA2AR receptor [12], but could nevertheless be used 
to achieve significant enrichments over random picking 
(albeit somewhat lower than in DRD2 and TA2R models) in 
the retrospective VS study. 

 Also several other structure-based virtual screening 
studies have shown that loopless TM models of GPCR 
receptors can be suitable targets for virtual screening (see 
Table 1) [8, 47-50]. This further supports our believe that 
loop (notably ecl2) modeling should be reserved for cases 
where loop building can be guided by experimental restraints 
and the effect of incorporation of extracellular loop(s) can be 
tested by retrospective VS. 

4.6. Model Validation by Prospective Virtual Screening 
of Compound Libraries 

 The final refined receptor model can be evaluated and 
validated in various ways. Many models have been used to 
rationalize site-directed mutagenesis data and/or structure-
activity relationships, mostly in a retrospective manner. We 
believe that the strength and added value of GPCR models 
especially lies in its application to identify new ligands from 
large chemical databases by prospective virtual screening 
studies (step 7, Fig. (1)). Fig. (7) gives an overview of a 
general structure-based virtual screening flow chart.  

 The initial compound library should be filtered to remove 
undesirable compounds exhibiting chemically reactive 
moieties [135], scaffold-inherited toxicity [136], or poor oral 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Docking poses selected by IFP of: (A) S-timolol (yellow carbon atoms, docked with Gold) in the ADRB2 crystal structure 
compared to the reference binding mode of S-carazolol (green carbon atoms), (B) R,S-procaterol (yellow carbon atoms, docked with Surflex) 
and (C) S-carvedilol in the customized ADRB2 structure compared to the reference binding mode of R-isoproterenol (green carbon atoms). 
H-bonds between the docking pose and the receptor are depicted by black dots. The IFP bitstrings of receptor-bound timolol (A), R,S-
procaterol (B), and carvedilol (C) are compared to the reference IFPs of carazolol and isoproterenol in panel D. For reasons of clarity, the bit 
strings of only six residues (out of 33) are shown as an example. For each pose and corresponding IFP bit-string, ranks in a retrospective 
virtual screening excercise [30] are indicated for Gold/Surflex docking ranked by IFP, Goldscore and Surflex score. 
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bioavailability [137]. An overview of chemical libraries 
suitable for virtual screening is presented in [138]. In most 
reported GPCR-based virtual screening studies, such pre-
filters are applied to construct the chemical library to be 
screened (Table 1). Additional filters, derived from property 
ranges (e.g., molecular weight, number of rotatable bonds, 
number of rings, hydrogen bond donor/acceptor counts, 
number of positively/negatively charged atoms, etc.) deter-
mined from a set of known actives (step 1 of Fig. (7)), are 
applied in most GPCR VS studies as well (Table 1) to obtain 
a more “lead-like” database. Chemical similarity descriptors 
and metrics [139] and 3D-shape similarity or pharmacophore 
models [140] derived from known ligands can be used to 
narrow down the number of compounds to be handled in 
automated docking simulations (step 2) even further. 

 In step 2 the chemical database is automatically docked 
in the receptor model. Numerous automated docking prog-
rams [138, 141] and scoring functions [138, 141] based on 
different physicochemical approximations are available. In 
several GPCR VS studies [86, 102, 104, 142], docking simu-
lations have been guided by pharmacophore constraints [143, 
144].  

 In steps 3 and 4, the docking poses are post-processed 
and scored, respectively. Many structure-based virtual 
screening investigations have only employed docking 
scoring functions to rank docking poses, but more and more 
structure-based virtual screenings apply additional filters to 
post-process docking results. The reason for this is that, as 
already mentioned in section 4.3, the scoring accuracy of 
docking-scoring combinations is very much dependent on 
physicochemical details of target-ligand interactions [121-

124] and fine details of the protein structure [125, 126]. One 
way to overcome these problems is to use a consensus 
scoring strategy. One or several scoring functions [121] can 
be used in combination with one or several docking algo-
rithms [145], applied to one or a set of receptor structures 
[146], and using different consensus scoring scenarios [20]. 
Especially the latter consensus scoring approach has been 
applied in several of the VS studies [20, 24, 29, 86, 102, 
103], but also docking into an ensemble of receptor 
coordinates at the same time [28], or into alternative receptor 
structures to retrieve only specific ligand types [20, 30] has 
been applied. Topological filters can be used to filter out 
poses exhibiting steric or electrostatic mismatches between 
the ligand and its target [147]. In the case of CRFR1 (Fig. 
(5)), we have discarded docking poses not satisfying 
important ligand-receptor H-bonds. Such essential receptor-
ligand interactions can be derived from experimental data 
featuring a reference binding mode of a true active, and can 
be used as post-processing filter [29, 30, 50, 86]. In some VS 
studies, a receptor-ligand interaction finger-print (IFP) 
scoring metric [128, 148] has even been used to rank 
docking poses [30, 46, 101]. When too many ligands are 
retrieved along the VS funnel, it is generally wise to cluster 
virtual hits by chemical diversity (step 5). The most intuitive 
way, at least for medicinal chemists, to achieve this kind of 
classification is to group compounds by chemical scaffolds 
[24, 26, 149] and prioritize scaffolds rather than individual 
compounds. Sampling a few representative analogs for each 
scaffold usually enables a selection of chemically-dissimilar 
compounds for biological evaluation [26]. Finally, the 
selected docking poses and compounds should be visually 
inspected in step 6 for the ultimate selection: no algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Structure-based virtual screening flow chart.  
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yet outperforms the brain of an experienced modeller for 
such a task.  

 Parallel to the docking-based virtual screening run, 2D-
similarity, 3D-similarity, or pharmacophore searches can be 
performed to complement the docking-based hit list [23, 27, 
50, 122, 142, 150]. The receptor bound conformation of 
reference compounds can be derived from docking simu-
lations in the receptor model. In this way, the receptor model 
and information derived from the receptor-ligand complex 
are used to set up 3D-similarity searches or pharmacophore 
models. Alternatively, pure receptor-based pharmacophore 
models, derived from ligand-receptor interaction hot spots in 
the binding pocket, can be even used in the absence of a 
ligand [151].  

5. GPCR VIRTUAL SCREENING SUCCESS STORIES 

 As described in the previous section, many possible 
problems and pitfalls have to be overcome in the GPCR 
modeling process. However, even despite the possible 
structural inaccuracies of the final refined GPCR models, 
these models have been efficiently used to find new ligands, 
as will be described in this final section.  

 Table 1 gives an overview of recent prospective struc-
ture-based VS studies on GPCR models. Figure (8) presents 
agonists as well as antagonists identified by prospective 
structure-based virtual screening studies in GPCR models 
([8, 23, 24, 26-28, 49, 50, 103, 104, 152, 153], see Table (1)) 
and the previously known ligands used to refine the model 
used for the structure-based VS run. Notice that structure-
based virtual screening often yields new chemical scaffolds, 
but still contain essential functional groups like positively or 
negatively charged atoms, often because these chemical 
features/properties were used as filters/constraints to set up 
the initial ligand database or score/rank docking poses. 
Interestingly, novel receptor agonists have been found using 
antagonist-bound receptor models and vice versa (see also 
Table (1)). Fig. (8) shows that most of the studies have 
focused on bioaminergic receptors, but that more and more 
successful prospective structure-based virtual screenings are 
reported also for other rhodopsin-like GPCRs (brain-gut 
peptide, chemokine, lipid, peptide, purine), while the first 
models of glutamate-like and secretin-like receptors have 
been successfully challenged in retrospective virtual screen-
ing exercises, opening up new challenges in the field of 
structure-based VS for GPCR ligands. Only prospective (and 
not retrospective) VS studies on GPCRs will be discussed in 
more detail in the following section. 

 The very first prospective virtual screening study on a 
GPCR model was conducted by Varady et al. on the identi-
fication of dopamine D3 (DRD3) receptor ligands [105]. A 
homology model was derived from the bRho crystal struc-
ture and refined by MD in a fully hydrated phospholipid 
layer. Snapshots from the MD-trajectory were clustered into 
four families out of which one representative was selected 
for docking studies. First a pharmacophore was derived from 
a set of known DRD3 ligands (antagonists and partial 
agonists (Fig. (8)) and used as a query for retrieving a first 
hit list of 6 727 compounds from an initial database of 250 
000 compounds. This hit list was then docked to each of the 
four receptor cluster representatives. A total of 2 478 

compounds, ranked within the top 30% of the library for at 
least two receptor conformations, were finally selected. 
From this second hit list, 1 314 molecules showing a Tani-
moto similarity index lower than 80% to any of the 10 
known DRD3 ligands were selected. Twenty molecules were 
finally selected for biological evaluation, eight com-pounds 
(Fig. (8)) exhibited submicromolar binding affi-nities. 

 A similar strategy was used by Evers et al. to identify a 
new neurokinin-1 receptor antagonist [104]. Ligand-biased 
modeling of the receptor was first realized with the Mobile 
program. A set of crude homology models was first obtained 
from the bRho crystal structure and a known NK1R 
antagonist (Fig. (9)) was docked into the receptor model. 
Four poses satisfying key interactions were selected for 
generating a new set of receptor models scored by a 
knowledge-based scoring function to satisfy the receptor-
ligand constraints. The selected model was refined by energy 
minimization. A 1D-filter (removing large and flexible 
structures) was used to discard 50% of the initial database of 
800.000 compounds. From this reduced database, 131 967 
compounds were selected satisfying a 2D-pharmacophore 
query, from which subsequently 36 704 compounds were 
selected satisfying a 3D pharmacophore hypothesis. Using 
an implicit definition of forbidden volumes, the size of the 
hit list was further reduced to 11 109 compounds. Only these 
molecules were docked to the refined receptor model 
(imposing an H-bond to an important residue in NK1R) and 
scored by the same knowledge-based scoring function. 
Energy minimization refinement and visual inspection of the 
1000 best-ranked ligands resulted in the final selection of 
seven candidates. One of these molecules (Fig. (8)) proved 
to bind to NK1R with a submicromolar inhibition constant. 
The same approach was used to identify alpha 1A adrenergic 
receptor (ADA1A) antagonists [103]. Homology models of 
ADA1A were constructed in a similar fashion as for NK1R 
and the one that best suited the known binding mode of a 
reference antagonist was selected for structure-based virtual 
screening. A series of filters of increasing complexity 
(satisfying topological and pharmacophore restraints) were 
then applied to select 22 950 compounds (from the initial 
728 000 compound stock collection) for docking simulations 
in the receptor model. An optimal docking-scoring strategy, 
derived from a retrospective virtual screening evaluation, 
was used to select 300 compounds which were then clustered 
and a diverse subset of 80 molecules was finally evaluated 
for receptor binding. Thirty seven compounds exhibited Ki 
values lower than 10 μM, of which 24 molecules bound in 
the submicromolar range and three compounds (Fig (8)) 
below 10 nM. 

 An alternative ligand-steered homology method was 
recently reported by Cavassoto et al. to find new antagonists 
of the melanin-concentrating hormone receptor 1 (MCHR1) 
[50]. First, a homology model was built based on the bRho 
crystal structure. In a second step, 20 receptor-ligand models 
were generated by docking four known ligands (Fig. (8)) into 
the receptor model using an experimentally supported 
receptor-ligand distance constraint, ranked by a scoring 
function and clustered. These 20 structures were then 
subjected to MC simulations (without receptor-ligand 
distance constraint) and the top 20 best-energy complexes 
were selected and merged with the original 20 structures. 
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Table 1. Overview Prospective Receptor-Based Virtual Screening (VS) on GPCR Models 

Receptor
a
 Template

b
 Construction ecls

d 
Refin.  Database Conf. Post- Prediction Ref

k
 

  Method
c 

 Protoc.
e 

Pre-Filter
f 

Search
g 

Processing  Retrospec. Prospective  

       + Scoring
h 

Ligand Initial db
i 

Hits
j
 (tested)

 
 

amines            

ADA1A bRho Mobile 2 em dl+2D+3D ad clust+score ant 827.000 37 ant (80) [103] 

ADRB2 ADRB2 X-ray 1,2,3 - ? ad score ant 4.000.000 19 ant (56) [17,156] 

DRD1 DRD3  GPCRgen 1,2,3 em dl+2D  ad clust+c-score - 310.000 3 ant (17) [24] 

DRD2 DRD3  GPCRgen 1,2,3 em dl+2D  ad clust+c-score - 310.000 3 ago+2 ant (17) [24] 

DRD2 de novo Predict no em+md dl+ll ad score ant/ago 1.600.0000 7 ant (42) [8,49] 

DRD3 bRho thread 1,2,3 em+md dl+3D ad score+2D - 250.000 8 lig/ago (20) [105] 

HRH4 bRho Modeller 1,2,3 em dl (cnstr) ad c-score lig 5.066.235 16 (255) 29,86] 

5HT1A de novo Predict no em+md dl+ll ad clust+score+2D ago 1.600.0000 16 lig/ago (87) [48,49] 

5HT4R de novo Predict no em+md dl+ll ad clust+score+2D ago 1.600.0000 19 lig/ago (93) [49] 

Brain gut peptides           

MCHR1 bRho thread no em dl+2D+3D 3D clust - 615.000 19 ant (795) [161] 

TRFR1/2 bRho 3D-map 1,2,3 em+md 3D ad score+clust.  - 1.000.000 8 ant (~100) [28] 

Chemokines           

CCR3 de novo Predict no em+md dl+ll ad clust+score+2D - 1.600.0000 5 lig/ant (43) [8,49] 

CCR4 bRho thread 1,2,3 em+md dl+ll ad score - 450.000 16 ant (116) [154] 

CCR5 bRho thread+kink (2) 1 em dl+ll+2D ad clust+score+2D ant 1.600.0000  6 ago + 1 ant  (59)  [26] 

Lipids            

CNR2 bRho thread+kink 

(2+5) 

1,2,3 em+md none ad+3D 3D+score - 55.600 1 ago (68) [23] 

peptides            

FPR1R bRho thread no em none ad+3D 3D - 480.000 52 ant (4342) [150] 

NK1R de novo Predict no em+md dl+ll ad score lig 1.600.000 53 ant (8) [8,49] 

NK1R bRho Mobile 2 em dl+2D+3D cnstr ad norm score - 827.000 1 ant (7) [104] 

purines            

FFAR1 bRho thread 1,2,3 em+mc dl+2D+clus ad+3D score+3D+clust. - 2.600.000 13 ago+2 ant (52) [27,152] 

a)Receptors clustered according to Surgand et al. [40]; b)bRho (bovine rhodopsin) and ADRB2 are crystal structures, other receptors are models, de novo: no template used; 
c)Construction methods of the TM helical backbone (GPCRgen [34], Mobile [108], Predict , Membstruck) are described in more detail in the text; d)Construction of extracellular loops 

(ecls) explicitely guided by experimental data are underlined; e)Energy minimization (em) and molecular dynamics (md) refinement protocols are generally performed in the presence 
of a ligand; f)Consecutive filters (dl (drug-like physicochemical properties), ll (leadlike physicochemical properties), 2D (two-dimensional topological/chemical 

similarity/pharmaphoric  features/sub-groups), 3D (three-dimensional pharmacophore)) used to compile database for docking/3D conformer search; g)Conformer search method: ((H-
bond) constr(ained)) automated docking (ad), protein-based or docked ligand-based 3D pharmacophore search (3D); h)Method to score, rank and/or filter conformers: clust. (scaffold 

clustering), (c-)score ((consensus) docking scoring function), 2D (two-dimensional topological/chemical similarity/pharmaphoric  features/sub-groups), 3D (three-dimensional 
pharmacophore); i)Prospective validation: initial databatabase (db) and j)number of experimentally confirmed hits with detectable affinity/activity (of the total number of tested 

compounds); k)References describing model construction and refinement as well as virtual screening are reported; k)not reported. 
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Fig. (8). Examples of agonists (ago) and antagonists (ant) identified by prospective virtual screening studies in GPCR models ([8, 23, 24, 26-
28, 49, 50, 103, 104, 152, 153], see Table (1)) refined with known ligands (upper structure). It should be noticed that only one representative 
hit (and one reference compound) is presented for each VS study and that compounds of some prospective VS studies reported in literature 
(Table 1) have not been disclosed (DRD3, 5HT4, NK1R, and CCR3 [49], and CXCR7 [25]). 

 

These structures were clustered and visually inspected for 
the presence of experimentally supported receptor-ligand 
interactions, yielding 8 models which were challenged by 
retrospective virtual screening. The model retrieving the 

highest diversity of known ligand chemotypes in the top-
ranked list was selected and used for a prospective docking-
based virtual screen of a filtered database of 187 084 
compounds. A set of filters was imposed to post-process the 
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docking poses requiring the absence of ligand-receptor 
clashes and presence of a receptor-ligand H-bond. The 
remaining ca. 7 000 compounds were clustered by chemical 
similarity and the highest scoring compounds per cluster 
were chosen. Molecules with a total charge of +1 were given 
priority for biological evaluation, resulting in a set of 281 
compounds of which 129 were commercially available. Six 
of these exhibited Ki values in the micromolar range (a hit 
enrichment of 12 fold compared to random screening of a 
corporate collection). 

 In a relatively straightforward structure-based VS studies 
of Bayry et al. [154] and Liu et al. [153], antagonists were 
found by docking studies on bRho-based homology models 
of chemokine receptors 4 (CCR4) and 5 (CCR5), respec-
tively (Fig. (8)). About 13 000 compounds selected from an 
initial database of 450 00 compounds by a pharmacophore 
filter were docked in CCR4 and scored by a single scoring 
function, yielding a hit list of 116 top-ranked compounds; 16 
of these inhibited CCR4-mediated cell migration with IC50 
values lower than 10 nM. A database of 80 000 compounds 
was docked in CCR5 and ranked with a single scoring 
function, yielding a hit list of 150 compounds from which 95 
were purchased and tested; one compound exhibited an IC50 
value of 2 μM which was further optimized by structure-
based design (see later).  

 Edwards et al. [150] identified novel formylpeptide 
receptor (FPR1R) antagonists by virtual screening using a 
pharmacophore model derived from antagonist docking 
poses in a FPR1R receptor model (Fig. (8)). Exclusion 
spheres derived from the receptor binding pocket were added 
to the pharmacophore model and the top-ranked 4 234 com-
pounds were selected from a ~480.000 compound library; 52 
of these compounds were confirmed hits, of which 30 had Ki 
values in the micromolar range. 

 While in the above mentioned VS studies new anta-
gonists were found by docking into receptor models based 
on the inactive bRho structure and refined using known 
antagonists (Fig (8)), more and more reports show that also 
agonists can be found by structure-based VS in such inactive 
receptor models [23-27]. In some of these studies [23, 27], 
the initial bRho-based ground state model was refined by 
true agonists, but in other cases [24, 26] the inactive model 
was even refined by antagonists. The other way around, 
agonist-biased models have also been successfully applied to 
find antagonists [24, 29]. Examples of these studies will be 
discussed in more detail in the following section. 

 Kellenberger et al. identified new CCR5 agonists by 
virtual screening against an antagonist-customized receptor 
model [26] (Fig. (8)). A homology model was derived from 
the bRho crystal structure, but an alternative bend in TM2 
induced by the T2.56XP2.58 motif (conserved among chemo-
kine receptors) was modeled separately (see section 4.3). 
This receptor model was validated by retrospective virtual 
screening using two different docking programs. A library of 
1.6 million compounds was first filtered by 1D (drug 
likeness) and 2-D pharmacophore filters, decreasing the 
numbers of hits to 431 029 and 44 524 compounds, respec-
tively. This database was docked into the receptor model by 
two different docking programs in parallel. The top 5% of 
the two hit lists were then independently classi-fied based on 

common scaffolds. Scaffold classes enriched enough in well-
scored molecules were retained and a final list of 77 
molecules was selected by visual inspection of the binding 
mode. Of these, 59 could be purchased and were biologically 
tested; 10 compounds exhibited a detectable binding affinity 
for CCR5, of which four molecules had an IC50 in the high 
micromolar range, and of which three were surprisingly 
characterized as agonists. 

 Salo et al. found a novel agonist of the cannabinoid CB2 
receptor (CNR2) by structure-based VS in receptor model 
derived from the ground state bRho crystal structure and 
refined in the presence of a known CNR2 agonists (Fig. (8)). 
The conformations of TM2 and TM5 were customized to 
position certain residues shown to be involved in ligand 
binding by experimental data into the binding pocket, as 
described in section 4.3. The model was then subjected to a 
constant temperature MD run with positional constraints on 
the helix backbone atoms and a subsequent simulated 
annealing protocol applied to the side chains of the ligand 
binding pocket. Five structures were extracted from these 
simulations and the best snapshot was selected based on the 
quality of crude CoMFA models derived from docking poses 
of known agonists. This final model was used to derive three 
different pharmacophore models: one based on the pharma-
cophoric points of known agonists in the receptor model, a 
second model based on the binding cavity of the docked 
ligands, and a third model based on the combination of 
features taken from both the receptor and bound ligands. 

 Tikhonova et al. identified new agonists for the free fatty 
acid receptor 1 (FFAR1) [27]. The putative binding cavity 
[40] of an initial FFAR1 model, derived from the bRho 
crystal structure, was subjected to MC simulation [152]. 
Representatives of 12 structural clusters from the MC-
trajectory were selected according to the orientation of 
charged residues in the binding pocket and used for auto-
mated docking studies of a known agonist. Docking results 
in combination with solvent accessible surface area analysis 
and molecular interaction field analysis of the binding pocket 
and amino acid sequence analysis, were used to generate 
binding mode hypotheses which were then experimentally 
corroborated by SDM studies [152]. The model best in line 
with the SDM data was further refined by MC and QM 
energy minimization to optimize a part of the receptor-ligand 
complex. An initial database of ca. 2.6 million compounds 
was reduced to 70 477 molecules by a topological filter [27]. 
This set of compounds was docked into the refined receptor 
model and also subjected to a 3D pharmacophore search 
based on the refined receptor-ligand complex. From the 
docking simulations 3 131 compounds were selected ranked 
by a docking scoring function, while 1 581 compounds 
passed the pharmacophore filter. From these hit lists com-
pounds were clustered by chemical diversity and visually 
inspected. From the subset of 183 compounds obtained both 
by docking and the pharmacophore search, 32 compounds 
were selected, appended by 10 unique compounds from each 
of the different hit lists. Experimental testing identified six 
active compounds, of which five displayed agonistic activity 
with EC50 values around 10 μM. One of the confirmed hits 
was only identified by docking and another one only selected 
by the pharmacophore search, while four hits were found by 
both methods. 
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 Kiss et al. [29] found new ligands for the histamine H4 
receptor (HRH4). Receptor models based on the bRho 
crystal structure were separately refined in the presence of 
known agonists and antagonists [86]. These optimized 
models, as well as a set of ligand-free receptor models were 
challenged by a docking-based virtual screening study. The 
highest enrichment of known antagonists and agonists in the 
top-ranked scorings lists was achieved by the agonist-bound 
model (Fig. (8)) and these enrichments increased further 
when the docking simulation was guided by a receptor-
ligand interaction pharmacophore constraint. This model was 
later used in a prospective VS study [29]. A large database of 
5 066 235 compounds were all docked into the validated 
receptor model and ranked using an optimized scoring 
functions combination [86]. The top 2 000 hits were visually 
inspected, discarding poses having a wrong tautomeric state 
and not positioned in the binding cavity and preferring 
compounds showing experimentally supported receptor-
ligand interactions, yielding a final list of 128 compounds of 
which 66 were purchased. The top 45 000 ranked docking 
poses were automatically filtered consi-dering a specific 
receptor-ligand interaction, clustered by chemical diversity, 
yielding a selection of 229 compounds of which 189 
(including 23 analogues) were purchased. Out of the total of 
250 biologically tested compounds 16 com-pounds showed a 
significant (> 20%) displacement of 10n M [3H]--histamine 
at a 5 μM concentration (Fig. (8)). 

 Jones et al. [25] identified C-X-C chemokine receptor 
type 7 (CXCR7) agonists. A homology model was derived 
from bRho and customized by twisting TM6, like described 
in section 4.3. A database containing an unknown number of 
compounds was docked into this model and 1000 com-
pounds were selected based on docking score and chemical 
diversity criteria. Of these, 392 compounds were available 
for screening and two of these were experimentally confir-
med to have agonist activity at high concentrations (ca. 100 
μM). 

 Engel et al. found new antagonists of thyrotropin-
releasing hormone receptors (TRFR1/2) [28] using an 
agonist-biased receptor model (Fig. (8)). A homology model 
of TRFR1 based upon a 3D projection map of bRho [155] 
was refined and validated by numerous prospective experi-
mental studies. An initial database of ca. 1 million com-
pounds was first screened using a receptor-based pharma-
cophore model derived from the refined and validated 
receptor-agonist complex, yielding a hit list of ca. 100 000 
compounds from which 10% was selected based on chemical 
diversity. These ca. 10 000 molecules were then docked to 
an ensemble of five different receptor structures, considering 
flexibility of the binding pocket. The top 10% ranked 
compounds were again clustered by chemical diversity and a 
final selection of 100 compounds (appended by several 
related compounds identified by a nearest neighbour search) 
were tested experimentally. Eight com-pounds were experi-
mentally confirmed to be TRFR1 antago-nists (no agonists 
were found), including five structurally diverse chemical 
classes. 

 The recently published carazolol-bound ADRB2 crystal 
structure has recently been used for prospective virtual 
screening by Sabio et al. [156]. In-house proprietary and 

commercial databases of ca. 400 000 and 4 million com-
pounds were docked in the ADRB2 crystal structure and 
scored with a single docking scoring function. Out of 150 
tested compounds, 8 exhibited micromolar, and 23 sub-
micromolar Ki values (of which 4 in the subnanomolar 
range). Most of the reported virtual hits were however 
chemically similar to carazolol (Fig. (8)). 

 Becker et al. [49] described the use of (crystal structure) 
template-independent models generated by the de novo 
Predict method [8]. The top 10% of an initial database of 1.6 
million compounds passing a receptor-specific topological 
filter was docked into 3D models of three aminergic recep-
tors (5-hydroxytryptamine 1A (5HT1A), 5-hydroxytryp-
tamine 4 (5HT4R), and dopamine D2 (DRD2)), the peptide 
receptor NK1R, and the chemokine receptor type 3 (CCR3) 
and rescored using several scoring functions. A series of cut-
off values for each score was used to reduce the size of the 
hit list. The remaining compounds were then filtered by 
using 3D principle component analysis based on the 3D 
properties of docked solutions. Molecules describing the 
same 3D space as known ligands were finally retrieved and 
clustered by diversity, yielding a list of ca. 100 represen-
tative virtual hits for each receptor. Hit rates between 12 and 
21% were reported at a 5 micromolar cut-off for four 
(5HT1A, 5HT4, DRD2, NK1R) out of five targets (see  
Table 1). 

 In most of the studies described above, the final hit 
selection is performed by scoring and post-processing recep-
tor-ligand docking poses (steps 2-6 in Fig. (8)). In some 
cases [23, 27, 50, 150], models of receptor-ligand complexes 
have been used to construct pharmacophore models and/or 
derive exclusion spheres for pharmacophore searches (step 7 
in Fig. (8)). Whereas ligand-based models can only reveal 
binding features which are already present in the reference 
ligands, the inclusion of complementary information from 
the receptor cavity allows for a n understanding of the 
molecular recognition process [142]. In fact, some of the hits 
found in the structure-based VS runs have been successfully 
optimized by structure-based design, similarity searches, and 
analysis of the receptor-ligand docking pose. Comparative 
docking studies of a 5HT1A VS hit (Fig. (8)) in models of 
the 5HT1A and ADA1A receptors, as well as the hERG ion 
channel were used to design analogues with higher 
selectivity for 5HT1A over ADA1A and reduced affinity for 
hERG [48]. Fragments of an initial VS hit found for CCR5 
(Fig. (8)) and a known CCR5 antagonist were assembled to 
design an antagonist with higher affinity [153]. Similarity 
searches were performed to find close neighbors of experi-
mentally confirmed VS hits for FFAR1 (Fig. (8)), and these 
analogues were used to derive structure-activity relation-
ships and further validate the receptor model [27]. Nearest 
neighbour and pharmacophore model searches were also 
performed based on initial VS hits for the MCHR1 receptor 
(Fig. (8)), resulting in many additional hits for this receptor 
[50]. Similarity analysis was also used to identify more 
agonists based on an initial hit found by structure-based VS 
in CXCR7 [25]. Predicted ligand stereoselec-tivity (Fig. (8)) 
and roles of ligand binding residues in TRFR1 were 
experimentally corroborated to further validate the receptor 
model [28].  
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6. CONCLUSIONS 

 The last two years have brought the scientific commu-
nity high resolution structural details on how a diffusible 
ligand is recognized by various class A GPCRs. In some 
cases (ADRB2, ADRB1), the experimentally-dertermined 
binding mode of the small molecular-weight ligand has not 
been a real surprise to experienced GPCR modelers because 
of the high directionality of protein-ligand interactions and 
the massive amount of previously-known experimental data 
on analogous ligands. In one case (AA2AR), the binding 
mode was almost impredictable from known data and might 
suggest inexperienced modelers that predicting fine details 
of GPCR-ligand interactions is out of reach. The peculiar 
nature of the Adenosine A2A receptor, notably the 
exceptional features of its second extracellular loop makes 
this example more an exception than the rule. The recently-
described structure of the ligand-free opsin also provides 
interesting hints for ligand entry and exit from the TM cavity 
that may be common to many liphophilic GPCR ligands. The 
availability of multiple structures of the 7-TM helical bundle 
will undoubtedly facilitate the modeling of sequence-specific 
structural features of future GPCRs (bents, kinks). Unfor-
tunately, it has not been possible yet to achieve this level of 
fine molecular details with receptors in an activated state. 
Therefore, the structure-based rational design of partial/full 
GPCR agonists still remains a difficult task in which 
experimental data are of utmost importance to restrict the 
number of possible models. We also anticipate that other 
ligand-binding sites (e.g. allosteric sites [157], receptor 
dimers [158] , G-protein interface [159, 160]) will be inves-
tigated in a near future to provide alternative solutions in the 
design of GPCR-regulating bioactive com-pounds. 

ABBREVIATIONS 

GPCR  =  G protein-coupled receptor  

TM  =  Transmembrane helix 

bRho  =  Bovine rhodopsin 

ADRB1  =  Beta 1 adrenergic receptor 

ADRB2  =  Beta 2 adrenergic receptor 

AA2AR =  A2A adenosine receptor  

Ops*  =  Ligand-free opsin 

EM  =  Energy minimization 

MD  =  Molecular dynamics  

CRFR1 =  Corticotropin-releasing factor receptor 1 

ecl =  Extracellular loop 

SDM  =  Site-directed mutagenesis 

SAR  =  Structure-activity relationships 

S1PR1  =  Sphingosine 1-phosphate receptor 1 

VS  =  Virtual screening  

IFP  =  Interaction fingerprint 
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