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The present study introduces a novel low-dimensionality fingerprint encoding both ligand and target properties
which is suitable to mine protein-ligand chemogenomic space. Whereas ligand properties have been
represented by standard descriptors, protein cavities are encoded by a fixed length bit string describing
pharmacophoric properties of a definite number of binding site residues. In order to simplify the cavity
fingerprint, the concept was applied here to a unique family of targets (G protein-coupled receptors) with
a homogeneous cavity description. Particular attention was given to set up data sets of really diverse
protein-ligand pairs covering as exhaustively as possible both ligand and target spaces. Several machine
learning classification algorithms were trained on two sets of roughly 200000 receptor-ligand fingerprints
with a different definition of inactive decoys. Cross-validated models show excellent precision (>0.9) in
distinguishing true from false pairs with a particular preference for support vector machine classifiers. When
applied to two external test sets of GPCR ligands, the most predictive models were not those performing
the best in the previous cross-validation. The ability to recover true GPCR ligands (ligand prediction mode)
or true GPCRs (receptor prediction mode) depends on multiple parameters: the molecular complexity of the
ligands, the chemical space from which ligand decoys are selected to generate false protein-ligand pairs,
and the target space under consideration. In most cases, predicting ligands is easier than predicting receptors.
Although receptor profiling is possible, it probably requires a more detailed description of the ligand-binding
site. Noteworthy, protein-ligand fingerprints outperform the corresponding ligand fingerprints in mining
the GPCR-ligand space. Since they can be applied to a much larger number of receptors than ligand-based
fingerprints, protein-ligand fingerprints represent a novel and promising way to directly screen protein-ligand
pairs in chemogenomic applications.

INTRODUCTION

Chemogenomics is a novel research area aimed at iden-
tifying all possible ligands of all possible targets.1-3 Since
the corresponding target-ligand interaction matrix cannot be
fully filled at the experimental level despite noticeable
efforts,4 computational chemistry and computational biology
methods are supposed to clearly enhance the predictive power
of in silico chemogenomic applications.5 Predictive chemoge-
nomic methods generally rely on either comparing biologi-
cally annotated ligands properties6-11 or ligand-annotated
receptors (binding sites) properties.12-14 Finding novel
ligands for a given target or a novel target for a given ligand
is simply inferred from the basic principle that similar
receptors bind to similar ligands.15 Mining approaches in
which both protein and ligand spaces are addressed with the
same descriptor are still rare.16-20 An implication for this
observation is that such true chemogenomic approaches
require a unique framework for comparing ligand-binding
sites of various sizes. Up to now, most applications18-20 have
focused on G protein-coupled receptors (GPCRs) for various
reasons: (i) GPCRs still represent the main family of targets
for drug discovery;21 (ii) a large array of experimental data
on known GPCR-ligand pairs is available;22,23 (iii) GPCR

ligands readily cross-react with unrelated GPCRs;24 (iv)
GPCR cavities can be simplified to a fixed array of binding
site residues25,26 thus simplifying the definition of a generic
cavity descriptor while rendering the data analysis more
difficult because of the limited diversity of GPCR space
covering only about 400 human nonolfactive receptors;27and
(v) such approaches do not require three-dimensional (3-D)
protein structure information, which are still exceptionally
difficult to gather for this family of membrane proteins.28

Two previous studies on fingerprinting GPCR-ligand pairs
in chemogenomic applications have been described. In a
pioneering work, Bock et al.20 used rather standard 2-D
topological and atomic descriptors for ligands, physicochem-
ical properties of amino acid sequences for receptors, and
concatenate feature vectors for both the receptor and the
ligand in a single fingerprint. A Support Vector Machine
(SVM) model was trained on 5319 receptor-ligand pairs
from the PDSP Ki database22 to predict the Ki of any ligand
to any GPCR and used to propose novel ligands for orphan
GPCRs. Unfortunately, none of these predictions have been
validated up to now. Recently, Jacob et al.19 proposed a
similar approach on 4051 pairs from the GLIDA database23

with the noticeable exception that the tensor product between
vectors describing ligands and proteins were used to better
delineate correlations between ligand and target features. A
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SVM classifier was used to train and predict out-of-sample
pairs, but no convincing external test cases could be provided.

Both studies present however the remarkable advantage
to unambiguously demonstrate that GPCR-ligand pairs can
be encoded by a single vector and that machine learning
classifiers can recover true receptor-ligand pairs. However,
the general applicability of both models is unknown since
the number of pairs on which they have been trained on is
below our current knowledge on GPCR-ligand interactions.
Moreover, the influence of key parameters (knowledge of
the ligand binding site, selection of inactive decoys, machine
learning algorithm, external test set validation) were not
exhaustively addressed in these two seminal studies.

We herewith present a novel protein-ligand fingerprint
(PLFP) describing pharmacophoric properties of ligands and
their respective transmembrane binding cavities and its applica-
tion to mine GPCR chemogenomic space. Various machine
learning classifiers have been trained, on the most exhaustive
and diverse set of receptor-ligand pairs gathered up to date, to
predict the binary association of any individual ligand to any
individual receptor. The influence of several parameters on the
true predictive accuracy of these models was ascertained by
using two external test sets of 60 GPCR ligands. Practical
guidelines are given to favor the experimental validation of in
silico predictions to find either novel ligands for a particular
target or novel targets for a particular ligand.

METHODS

Setting up Data Sets of GPCR-Ligand Pairs. GPCR
ligands were retrieved from the 2007.2 release of the MDL
Drug Data Report.29 First, a list of 96 activity class numbers
corresponding to unambiguous GPCR targets was manually
collected and annotated by SwissProt entry name (Supporting
Information Table S1). Corresponding molecules were col-
lected in SD file format, ionized at physiological pH with
Filter230 (parameters in Supporting Information Table S2)
and standardized for structure homogeneity with Standardizer
v5.0.031 (parameters in Supporting Information Table S3).
Peptides and duplicates were last removed with an in-house
Pipeline Pilot script.32 A set of 21050 unique ligands was
selected and biologically annotated at the receptor level,
describing a total of 160 human GPCR entries. In the event
that no receptor subtype was explicitly mentioned in the
MDDR database (e.g., galanin antagonists), all subtypes of
the given receptor were assumed to bind to the corresponding
ligand (see complete annotation in Supporting Information
Table S1). A total of 32118 GPCR-ligand pairs could be
identified. When a receptor subtype was annotated by more
than 100 unique ligands, a MaxiMin distance algorithm33

was applied to all ligands of the same receptor using pairwise
Tanimoto similarity coefficients from MACCS structural
keys generated in MOE (version 2007.09),34 and the 100
most dissimilar ligands were finally selected for each
receptor. The final number of dissimilar GPCR-ligand pairs
was 8250. For each of the 160 GPCR entries, a set of
presumed inactive decoys was generated from our in-house
data set of 1.8 million commercially available druglike
compounds.35 Decoys were selected to span the same
molecular weight range than all true actives for a given
receptor and to be distant enough (Tanimoto coefficient
below 0.75 on MACCS structural keys) from any of these

actives. The MaxiMin clustering algorithm was used to select
the most chemically dissimilar decoys in order to ensure,
for each receptor entry, a constant balance between true pairs
or actives (5%) and false pairs or inactives (95%). A first
data set (Data set 1) of 168536 GPCR-ligand pairs (8250
actives and 160286 inactives) was thus finally designed.

A second data set (Data set 2) of pairs was generated
considering all 32118 GPCR-ligand pairs but using a
different set of decoys than that previously described for Data
set 1. In Data set 2, decoys are selected from the MDDR
GPCR ligand space. Decoys for receptor Ri are chosen if
two conditions are verified: (i) the decoy is annotated as a
ligand of receptor Rj but not of receptor Ri and (ii) Rj is
distant enough from Ri (minimum Euclidean distance of 7.0)
when the corresponding transmembrane binding cavities are
compared using CavFP descriptors (see the “GPCR cavity
descriptor” section below). Data set 2 was finally composed
of 234137 GPCR-ligand pairs (32118 active and 202019
inactive pairs).

Validation Set of GPCR Ligands. Two sets of ligands
targeting the corticotropin-releasing factor 1 receptor (CR-
FR1) and the neurokinin-1 receptor (NK1R) were extracted
from the MDDR. For each activity class, a maximal diversity
selection of 50 compounds was done using an in-house
Pipeline Pilot script using MACCS public keys as descriptor.
Property ranges (molecular weight, H-bond donor and
acceptor counts) were computed for both sets of actives and
used to select all bioactive ligands from the DUD database36

fulfilling the requested property ranges. A set of 950 diverse
DUD ligands was then selected as decoys.

External Test Sets of GPCR Ligands. Two external test
sets of known GPCR ligands were used to validate clas-
sification models. The first set (Test set 1, Supporting
Information Table S4) comprises 35 endogenous nonpeptide
GPCR ligands (targeting 88 GPCR entries) not described in
the MDDR data set. The second set (Test set 2, Supporting
Information Table S5) was composed of 25 recently de-
scribed synthetic “druglike” ligands, manually selected from
the literature to bind to a diverse set of 28 GPCR targets.37-60

Fingerprinting GPCR Ligand-Binding Cavities (CavFP
Fingerprint). For each of the 363 nonolfactive human GPCR
targets considered in this work, a discontinuous sequence of
30 cavity-lining residues was retrieved, as previously de-
scribed.26 Each cavity was represented by a fixed-length vector
of 240 bits describing every residue by 8 bits according to its
pharmacophoric properties (H-bond donor, H-bond acceptor,
charge, aromatic/aliphatic character, size; Supporting Informa-
tion Table S6). To measure the pairwise distance between all
GPCR entries, a global distance matrix was derived from
Euclidean distances measured from CavFP fingerprints. The
matrix was then converted into a phylogenetic tree using the
UPGMA algorithm61 as previously described.26 A consensus
final tree was built up from 1000 bootstraps using the CON-
SENSE program from the PHYLIP v3.2 suite.62

Fingerprinting GPCR Ligands. Since the ligand finger-
print needs to be later incorporated into a PLFP, the choice
of possible descriptors was limited here to fixed-length
vectors which size should be comparable to that encoding
the cavity. Three different descriptors were thus considered
to describe the ligand. First, the 166-bit public MACCS
structural keys were computed in MOE34 from 2-D SD
structures of all 21050 unique GPCR ligands stored in the
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database. Second, a modified version of the recently de-
scribed SHED descriptor (SHannon Entropy Descriptor)63

was implemented. Two additional pharmacophoric properties
(positive charge, negative charge) were added to the original
four properties (H-bond acceptor, H-bond donor, aromatic,
apolar) resulting in 21 possible atom-centered feature pairs.
The feature mapping to atom type was reconsidered to better
account for charged and aromatic atoms (see complete
mapping table in Supporting Information Table S7). Feature
mapping was done by using the OEChem v1.4.2 library30

and TRIPOS mol2 atom names.64 The entropy SHED value
of each of these 21 pairs was computed as originally
described63 and recorded into a vector of 21 reals.

Last, the third descriptor was directly derived from the
above-described SHED descriptor by storing the full distri-
bution (DistFP) of path lengths between all 21 feature pairs.
Only the shortest path between two features was considered
up to a maximum length of 18 bonds. The DistFP descriptor
is a vector of 376 (21 * 18) reals.

Concatenation of GPCR and Ligand Fingerprints
into a PLFP. The GPCR-ligand fingerprint was defined
according to the approach proposed by Bock et al.20 by
concatenating the CavFP cavity descriptor with each of the
three previously described ligand descriptor (MACCS,
SHED, DistFP). A final bit was added to describe whether
the corresponding GPCR-ligand binary association is regis-
tered in our MDDR-derived GPCR-ligand database or not.

Machine Learning Methods. Random Forest (RF) and
naı̈ve Bayesian (NB) classification models were generated
using the Java machine learning workbench WEKA v3.5.5.65

Default settings of the Breiman implementation66 of RF in
Weka was used, except for the maximal number of trees
which was set to 50. SVM classification models were
computed with libSVM v2.84.67 All SVM models were built
using a RBF kernel. Cost (C) and gamma (γ) parameters
were optimized for each model by testing 32 possible
combinations (C ) 10[0:3], γ ) 2[-6:2]). Whatever the variation
(machine learning method, fingerprint, decoy set), the SVM
model finally selected was the one that leads to the best
balanced accuracy Ba

where TP ) number of true positives, TN ) number of true
negatives, P ) number of positives, and N ) number of
negatives.

The criteria used to compare classification models are
recall, precision, and F-measure, which are defined as follows

where FN ) number of false negatives, and FP ) number
of false positives.

RESULTS AND DISCUSSION

The aim of the current study is to evaluate the relevance
of machine learning classification models for predicting
binary association between a GPCR and a ligand from simple
1-D protein-ligand fingerprints. If predictions have to be
tested experimentally, one would restrain the validation to a
single receptor (ligand screening) or a single ligand (receptor
profiling). In silico predictions were therefore performed in
two directions: (i) recover/find ligands for a given receptor
(from here on stated as “ligand mode”) and (ii) recover/find
targets for a given ligand (from here on stated as “receptor
mode”). In order to carefully validate both the fingerprint
and the classifying method, we will discuss throughout this
section the influence of a single modification on various
models. We should here recall that the aim of the current
study is not to predict either binding modes or binding
affinity but simply to anticipate whether or not a ligand may
bind to the canonical transmembrane domain26 of a GPCR.

Input Data and Fingerprints. Particular attention has
been given in gathering a really representative and diverse
set of GPCR annotated druglike ligands. The MDDR data
set29 was chosen as the starting data warehouse since it
contains one of the largest collections of biologically
annotated druglike compounds, which has very often been
used as a source for developing/comparing GPCR ligand-
based in silico screening methods.68,69 Although the annota-
tion at a molecular target level is not always straightforward
with respect to other commercially available biologically
annotated compound collections,5 we do not believe that the
choice of this particular data set leads to a significant bias
in the results reported herein. A set of 21050 druglike
compounds with a precise GPCR annotation, resulting in
32118 GPCR-ligand binary pairs, could be retrieved.

Importantly, peptides and peptidomimetics were discarded
from the final selection since they are well-known to bind
to the extracellular loops70 and not the transmembrane cavity
our CavFP fingerprint is focused on. Analogously, ligands
binding to the extracellular domain of Class B and class C
GPCRs21 were also discarded manually. The GPCR biologi-
cal space covered by our data set comprises 160 human
receptors (Figure 1A), out of which 70 entries are described
by at least 100 unique ligands. Nineteen out of 22 GPCR
subfamilies, that we previously defined by comparing all
nonolfactive human GPCRs with a structural chemogenomic
approach,26 are described in our data set (Figure 1B). Only
three subfamilies of orphan receptors (Adhesion, MAS,
SRBs)26 are not addressed herein. As expected, the subfamily
of biogenic amine receptor ligands is the most represented
(39% of ligands) since it just reflects drug discovery trends
over the last decades.71 However, limiting the maximum
number of ligands for each receptor to an upper value of
100 decreases the risk of biasing the ligand data set for a
particular GPCR space. All druggable GPCR subfamilies
(e.g., chemokine, purines, peptides) are currently addressed
in the present study, even that for which the first nonpeptide
ligands have been reported quite recently.72

The generic cavity descriptor used to describe GPCR
transmembrane binding sites slightly varies from the one
recently used in our chemogenomic analysis of GPCR
cavities.26 Instead of using concatenated binding site se-
quences and sequence identity as a pairwise distance, we

Ba ) TP/P + TN/N
2

Recall ) TP
TP + FN

Precision ) TP
TP + FP

F ) 2(Precision × Recall)
Precision + Recall
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here encode in a bit string the pharmacophoric properties of
each of the 30 residues26 selected for defining a consensus
ligand-binding site in the TM cavity. The relevance of the
CavFP descriptor is outlined by its capacity to lead to a
cavity-biased phylogenetic tree (Figure 2) in line with the
full sequence-derived tree.73 Only the family of ‘Peptides
GPCRs’ (receptors for peptide endogenous ligands) is divided
in two unrelated branches. For the remaining 21 subfamilies
previously identified by sequence analysis,26 receptors for
specific chemotypes (e.g., purines, chemokines, lipids) are
unambiguously grouped together (Figure 2).

Having validated the ‘cavity block’ of our PLFP, we
looked next at the relevance of the ‘ligand block’. SHED
and MACCS descriptors have both been validated as
information-rich molecular descriptors in previous reports.74,75

Since we significantly modified the original SHED descrip-
tor,63 we challenged our SHED implementation as well as
the derived DistFP descriptor (see the ‘Methods’ section)
for discriminating true actives from chemically similar decoy
ligands in a simple ligand-based classification model. Ligands
of two unrelated GPCRs (CRFR1, NK1R) were retrieved
from the MDDR data set. Decoys were chosen from bioactive
compounds (mostly enzyme inhibitors) of the DUD data-
base36 presenting the same property range (molecular weight,
H-bond donor and acceptor counts) than true CRFR1 and
NK1R ligands. Three machine learning algorithms (NB, J48,
and RF)) were applied to classify DUD ligands using three
fingerprints (SHED, DistFP, MACCS). The accuracy of the
classification (Figure 3) was assessed by computing the area

under the ROC curve for the 9 possible combinations, by
repeating 10 times a 10-fold cross-validation on each data
set. The three ligand descriptors are indeed suitable to
distinguish true actives from chemically similar decoys in
both activity classes with ROC values between 0.7 and 0.96.
In addition to the well investigated MACCS keys, the distFP
descriptor, despite its relatively small size (378 reals), is
remarkably accurate, whatever the machine learning algo-
rithm, although extensive validation on much more activity
classes would be required to draw more general conclusions.
A clear trend is however that RF seems the best classification
method, irrespective of the ligand descriptor used in both
data sets (Figure 3). Since the J48 decision tree method was
clearly inferior to both RF and NB models, it was discarded
for the later analysis of protein-ligand fingerprints.

Classification and Prediction Models from Data Set
1. Cross-Validation Models. Data set 1 is composed of
168536 GPCR-ligand pairs (8250 actives and 160286 inac-
tives) in which decoys have been chosen within the chemical
space of commercially available druglike compounds that
do not intersect with the MDDR GPCR ligands. We first
evaluated the performance of a global model versus local
models by repeating 10 times a 10-fold cross-validation
classification. Whereas the global model considers all data,
19 local models were done for each of the 19 GPCR
subfamilies/clusters26 for which GPCR-ligand pairs are
available. The probability of occurrence of a protein-ligand
pair is then given by the local model to which the corre-
sponding receptor belongs to. Probabilities higher than 0.5
from all local models are then merged and ranked by
decreasing values.

Three algorithms (SVM, RF, NB) were used in combina-
tion with three ligand descriptor blocks (SHED, DistFP,
MACCS) in the local models. Only the SVM and NB
classifications could be applied to the global model since
the RF implementation in Weka could not load all data in
memory. For all SVM models, the three descriptors and the
two machine learning algorithms performed relatively well
in terms of recall and F-measure (values between 0.6 and
0.85; Figure 4) and were excellent with respect to the
precision in predicting true active GPCR-ligand pairs (values
between 0.9 and 0.95). The DistFP/SVM combination on
local models exhibits the peak performance and the lowest
variability in the observed quality criteria (recall, precison,
F-measure). Despite acceptable recall values, NB used as a
classifier is significantly less interesting than SVM because
of its much lower precision in both the global and local
models (Figure 4). We anticipate that the ‘cavity block’ of
the PLFPs is not variable enough for NB models, notably
when applied to a single protein family as it is the case in
the current study. Therefore, NB models were not used to
predict protein-ligand pairs for the two external test sets.

Predicting GPCR-Ligand Pairs. Whether there is a cor-
relation between the performance of a classification model
in the latter cross-validation experiment and its true predictive
power was addressed next by trying to predict either the true
receptor(s) of GPCR ligands (receptor prediction mode) or
the true ligand(s) of GPCRs (ligand prediction mode). For
that purpose, ligands from two external test sets (Set 1: 35
endogenous nonpeptide ligands; Set 2; 25 synthetic ligands)
absent from the original training set were used. Test set 1 is
an exhaustive collection of all currently known nonpeptidic

Figure 1. Coverage of ligand and receptor space by the GPCR-
ligand data set. A) Number of unique ligands annotated for 160
human GPCRs. B) Ligand distribution (in percentage) for 19 out
of 22 GPCR clusters described by Surgand et al.26
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GPCR endogenous ligands and is therefore of interest to
check whether our PLFPs are suitable to deorphanize a
GPCR of interest. Test set 2 is a handmade collection of
recently described synthetic ligands chosen for their structural
novelty and target diversity (see Supporting Information
Tables S4 and S5 for structure and target annotation). Each
test set was supplemented by a set of decoys as follows
(Figure 5). In ligand prediction mode, every true ligand was
supplemented by its own collection of chemically similar
commercially available decoys (1 active for 528 decoys in
test set 1; 1 active for 549 decoys in test set 2) thus leading
to 35 different external subsets (endogenous ligands) and
25 different external subsets (synthetic ligands). The receptor
description within each subset is kept constant in the PLFP.
In receptor prediction mode, decoys were simply any of the
363 GPCRs not associated with the true ligand in our
database, and the ligand descriptor block then remained
constant for each subset (Figure 5). In all cases, the
corresponding ligand and GPCR cavity fingerprints were then
concatenated and classified with the global model and the
local models corresponding to the GPCR targeted by each
of the actives (ligand prediction mode) or the local model

Figure 2. Phylogenetic tree of 363 human nonolfactive GPCRs, derived from an Euclidian distance matrix computed on GPCR cavity
(CavFP) fingerprints. The tree has been computed and rendered with HyperTree.84

Figure 3. Performance (ROC score) of three machine learning
models (Naı̈ve Bayesian, NB; Decision trees, J48; Random Forest,
RF) in classifying true actives and DUD decoys36 of two data sets
(cyclooxygenase-2 inhibitors, cox2, p38 MAPK kinase inhibitors,
p38) from three molecular descriptors (SHED, DistFP, MACCS;
see Computational Methods).
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corresponding to each of the 363 GPCRs described in the
PLFP (receptor prediction mode).

The external validation was analyzed in order to answer
two basic questions: (i) what is the size of the hit list (a hit
being either a ligand or a target according to the prediction
mode) and (ii) what is the rank of the true ligand/target in
the hit list. Ideally, the virtual screen should lead to the
smallest possible hit list and the best possible rank of the
true hit.

In ligand prediction mode (Figure 6A, B) the best
performance for predicting the 35 endogenous ligand of 88
different GPCRs was obtained with local models using the
MACCS/RF combination. This model is very accurate in

terms of recall (0.82) and precision (very short hit list and
very low rank of the true endogenous ligand). The DistFP/
RF combination is also appropriate for this test set. Other
combinations are less interesting mainly because of a low
specificity (large hit list but poor rank of the true ligand)
although the recall is in all cases quite acceptable (0.74-0.85;
Figure 6B). The global model is not appropriate whatever
the machine learning method and the ligand descriptor mostly
because of its low precision (Figure 6A).

Using the best classification model (MACCS/RF with local
models), the endogenous ligand is ranked first in the hit list
in 26 out of 35 hit lists (all results are summarized in
Supporting Information Table S8). This overall excellent

Figure 4. Performance of a global (panel A) and 19 local models (panel B) in classifying and predicting GPCR-ligand pairs from Data set
1. The mean value and standard deviation is given for all local models outputting a probability of binary association higher than 0.5.
Criteria used to judge the performance are recall (dark gray bars), precision (gray bars), and F-measure (light gray bars).

Figure 5. Construction of decoys sets in receptor prediction mode and ligand prediction mode. A) In ligand prediction mode, each true
ligand is supplemented by druglike decoys (X)87, Y)527 for test set 1; X)28, Y)549 for test set 2) in a receptor-specific subset. Predictions
are made from PLFPs where the ligand part (SHED, DistFP, MACCS; displayed as a light blue block) in each subset (Active 1 to Active
X) is variable and the receptor part (displayed as an orange block) is constant. B) In receptor prediction mode, each true receptor is
supplemented by GPCR decoys (Y ) 35 for test set1, Y)25 for test set 2) in a ligand-specific subset. Predictions are made from PLFPs
where the ligand part (SHED, DistFP, MACCS; displayed as a light blue block) in each subset (Active 1 to Active Y) is constant and the
receptor part (displayed as an orange block) is variable.
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performance demonstrates that PLFPs are indeed well suited
for predicting binary associations between a variable ligand
and a fixed receptor. No predictions could be made in 7 cases
(5-oxo ETE for OXOER1, kynurenic acid for GPR35, beta-
alanine for MRGRD, leukotriene C4 for CLTR2, leukotriene
D4 for CLTR1, propionic acid for FFAR2 and FFAR3,
thromboxane B2 for GPR44). These cases correspond to
situations where either very few data are available in the
training set (e.g., ligands for FFAR1, FFAR2, OXOER1,
GPR35, and MRGRD are absent or quite rare) or the
synthetic MDDR ligands differ significantly from the en-
dogenous compound (e.g., ligands for CLTR1, CLTR2, and
GPR44). The test set 1 is far from being an easy external
test set since it contains only full agonists, whereas synthetic
ligands on which the models have been trained on are mostly
neutral antagonists and inverse agonists. However, the results
obtained with the best model are quite encouraging. It can
be stated at this point that the best predictive model for test
set 1 (local models with MACCS/RF) is not that performing
the best in the previous cross-validation experiment on the
training set (Figure 4). Analogously, the performance
of the various models fluctuates dramatically when applied

to the second external test set of 25 synthetic ligands. In the
later case, recall values are significantly lower (0.16-0.64).
The local models using the MACCS/RF combination are still
interesting since they are quite specific and accurate but suffer
from a low recall (0.16). In other words, this classification
model rarely leads to predictions, but the few ones which
are outputted are of very high quality. The best compromise
for predicting true synthetic ligands is still achieved by local
models but using DistFP as ligand descriptor and SVM as
classification algorithm (Figure 6B). For 16 out of the 25
synthetic ligands in test set 2, the true ligand when seeded
with a set of 549 chemically similar decoys is recovered in
the hit list for its cognate GPCR entry. For many compounds
(e.g., PRED1, PRED2, PRED10; Figure 7), the true ligand
is ranked first within a short hit list (4% of the full list). In
some cases, the model returned an empty list (e.g., PRED8;
Figure 7) because the query ligand is too dissimilar to any
known ligand of that receptor. The size of the hit list depends
on the promiscuity of the corresponding chemotype for
various GPCRs. If the chemotype is relatively selective for
a particular GPCR subspace, the hit list is short and the true
ligand ranked high (e.g., PRED1). However, if the chemotype

Figure 6. Predicting possible protein-ligand pairs for two external test sets (test set 1 of 35 endogenous GPCR ligands, dark gray bars; test
set 2 of 25 synthetic GPCR ligands, light gray bars) with the global model (panels A and C) and the 19 local models (panels B and D)
trained on Data set 1 (see Methods). The size of the ligand (panels A, B) or the receptor hit list (panel C, D) is shown by a bar, and the
rank of the true ligand/receptor in the hit list is displayed by a horizontal bar-crossing line. Vertical lines starting from the bar and the
bar-crossing line indicate the standard deviation of the hit list size and of the true hit rank, respectively. The number on the top of the bar
is the recall of the prediction on the entire test set.
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is found in various GPCR activity classes (PRED23 re-
sembles much more adenosine and biogenic amine receptor
ligands than known OXYR ligands; Figure 7), the corre-
sponding hit list is larger since it contains many receptors
of the corresponding GPCR clusters and the rank of the true
receptor is low.

In receptor prediction mode, local models again outperform
the global model (Figure 6 C,D). Whatever the external test

set, the global model disappointingly produces unspecific and
large hit lists (above 100 receptors) with very high average ranks
of the true receptor (Figure 6C). Therefore, it cannot be used
to profile a particular ligand against a large panel of GPCRs.
Local models exhibit a much better performance. The MACCS/
RF combination is again excellent for the test set of endogenous
ligands. Figure 8 shows a few representative results obtained
with this model (see all results in Supporting Information Table

Figure 7. Examples of ligand predictions for various synthetic ligands of the external test set 2, using the DistFP-SVM model trained on
Data set 1. Numbers in brackets indicate the rank of the corresponding true ligand and the size of the hit list for a given receptor.

Figure 8. Examples of receptor prediction for various endogenous ligands of the external test set 1, using the MACCS-RF model trained
on Data set 1. The name of the true GPCR is indicated along with its rank and the size of the corresponding receptor hit list. In case of
binding to multiple receptors, the highest-ranked true receptor is underlined.

1056 J. Chem. Inf. Model., Vol. 49, No. 4, 2009 WEILL AND ROGNAN



S8). GPR119, a recently deorphanized receptor for oleyletha-
nolamide (OEA),76 is ranked third among the 16 predicted OEA
receptors, although no GPR119 ligands are stored in the training
Data set 1. The PLFP is particularly well suited for this example
since OEA share many structural features with anandamide
(AEA), an endogenous ligand for cannabinoid receptors,77 while
GPR119 and cannabinoid receptor cavities are also quite
similar.26 The trace amine TAAR1 receptor is retrieved as the
only putative receptor for tyramine (true TAAR1 ligand)
although more than 500 known GPCR ligands (mostly for
biogenic amine receptors) in the training set share the tyramine
substructure. The case of the fatty linoleic acid, a ligand for
unrelated FFAR1 and GP120 entries, is more difficult. Both
GPCRs have a very low sequence identity (13%) and are located
in distant branches of our cavity-biased tree. No GPR120 ligands
and only 3 FFAR1 ligands have been used to train the
classification model. Nevertheless, the two receptors are selected
in the hit list, GP120 being the highest ranked (15th, Figure 8)
but after false positives (e.g., prostaglandin receptors). If the
test ligand is very permissive for a wide array of receptors
spread over the entire GPCR space (e.g., lysophosphatidic acid),
the receptor hit list is very large with many false negatives (S1P,
prostaglandin and leukotriene receptors). Interestingly, no
predictions are made in the absence of data (e.g., no receptor
list for beta-alanine) which perfectly illustrates the fact that
QSAR models always have a limited applicability domain.

When applied to the set of synthetic ligands, the same trend
as previously reported in ligand prediction mode is observed:
the recall drops significantly. The best compromise is
achieved with the DistFP/SVM model (Figure 6D). This
classification model shows a good recall value (0.64) and
can still be applied for an experimental validation since it
would require testing a particular compound on an average
list of 30 receptors.

Several conclusions can be drawn from this first series of
predictions: i) classification models perform better when
applied to a target-ligand space already covered by the
training set, ii) in the absence of data, no prediction could
be made, iii) local models outperform a global model just
because they better address local properties of the protein-
ligand space under investigation, iv) the best cross-validated
model is not necessarily the most predictive one for external
test sets, and v) predicting ligands for a given receptor is
easier than predicting receptors for a given ligand.

The first four conclusions may not be surprising, but the
corresponding issues have not been fully addressed in
previous studies using PLFPs.17,19,20 The last conclusion
probably results from a bias in defining decoys in the training
Data set 1. Selecting decoys is an intense matter of debate
in the field of virtual screening,36,78 and no optimal solution
has been found yet. In the current implementation of PLFPs,
the variability of the ligand block is significantly higher than
that of the receptor block. Decoys here should describe
GPCR-ligand pairs with a very low probability of occurrence.
Since ligand space is much larger than GPCR space, it was
tempting to choose GPCR-ligand decoys by varying the
ligand part of the PLFP. However, the chemical space from
which decoy ligands are chosen (commercially available
druglike compounds) is different from that covered by true
actives (MDDR GPCR ligands). We therefore generated a
second data set (Data set 2) in which decoy ligands were
chosen exactly in the same chemical space as the true actives.

Classification and Prediction Models from Data Set
2: Influence of the Decoys Set. Data set 2 differs from the
first one in the way presumably inactive pairs had been
generated. The aim of the current study is not to present a
novel way of selecting decoys but just to pinpoint the
influence of decoys selection on results, notably when the
classification method is switched from ligand-prediction to
receptor-prediction mode. In data set 2, all 21050 MDDR
ligands are considered in association with their cognate
receptors as true actives (32118 pairs in total). The 202019
inactive pairs were chosen by linking the same MDDR
ligands with GPCR entries too far away, according to our
CavFP cavity fingerprint, from their true receptors (see
Computational Methods). A minimum Euclidean distance of
7.0 between two GPCR entries was chosen since it allows a
perfect separation of GPCRs across the 22 clusters.

Cross-Validation Models. Only local models applied to
Data set 2 will be discussed here because they unambigu-
ously showed a much better predictive performance than
global models on previous external data sets. Most local
models show excellent performances (recall, precision,
F-measure; Figure 9A). When compared to values obtained
for Data set 1, it appears clearly that modifying the way
GPCR-ligand decoys have been constructed does not affect
the accuracy of the models (compare Figure 4B with Figure
9A). However, since the performance of the cross-validated
model was not a good indicator of its true predictivity when
applied to external test sets, we applied the same external
validation as before on both sets of endogenous and synthetic
GPCR ligands.

Predicting GPCR-Ligand Pairs. In ligand prediction mode
local models are generally less accurate than those previously
obtained from Data set 1. Recall values are usually lower
(0.6-0.7 instead of 0.7-0.85), hit lists larger, and rank of
true ligands higher (compare Figure 6B with Figure 9B).
The MACCS/RF model which is again the best method for
predicting ligands is however inferior to the same model
derived from Data set 1.

As expected however, predictions in receptor mode (ligand
descriptor is kept constant) are now better (compare Figure
6D with Figure 9C). The MACCS/RF model for example is
very satisfactory; it generates receptor lists of reasonable size
(ca. 20 receptors) with an usually low rank of the fist-ranked
true GPCR (3-5) and an acceptable recall value (0.4-0.66),
regarding the complexity of the request. In 23 out of 35 test
cases (external set 1), the true receptor is recovered in the
hit list, quite often in the first position (see Supporting
Information Table S9 for a summary of all results). For
example, OXGR1 is indeed ranked first as putative receptor
for alpha-ketoglutaric acid (Figure 10). Interestingly, the
receptor list is quite short (5 entries) and notably encloses
receptors for chemically similar ligands like succinic acid
(SUCR1)79 and short chain fatty acids (FFAR2, FFAR3).80

The model is usually quite selective for the true receptors
when several subtypes are equally potent in ligand binding.
Hence, all four adenosine receptors are equally ranked at
first place as receptors of adenosine with very few false
positives. In our approach, any receptor which is given a
probability higher than 0.5 is selected as hit. Our data
however suggest than increasing the probability threshold
to a higher value (e.g., 0.8) would considerably decrease the
size of the receptor list with limited influence on the recall.
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For example, 41 GPCRs of the biogenic amine receptor
family are predicted as putative receptor of adrenaline (p >
0.5). Using a probability threshold of 0.8, only 12 entries
are selected, out of which the 8 true adrenaline receptors
are present. It is however quite difficult to customize such a
threshold for all receptors since many entries are described
by a limited number of ligands. In case the receptor
prediction produces a too large hit list, it might however
make sense to prioritize the top-ranked entries for experi-
mental validation.

When profiling synthetic ligands, the receptor lists are
generally larger and recall values inferior to that observed
for endogenous ligands (Figure 9C), but the true receptor is
found in 10 out of 25 possible cases. When the ligand is
very specific for a given GPCR space, the receptor list
remains short. An illustrative example is the profiling of the
selective MC4R antagonist (PRED14;49 Figure 10) which

returns the true receptor at first rank of a rather short receptor
list (Figure 10). Profiling a more permissive ligand (e.g.,
PRED11;53 Figure 10) produces larger receptor lists, but the
true receptors are still ranked high, possibly with false
positives but also false negatives (the top-ranked DRD3
receptor being is likely a true receptor of this ligand).53

A general trend which is observed, irrespective of the data
set, is that predictions in both modes (receptor mode, ligand
mode) are very often more accurate when applied to the set
of endogenous ligands which are indeed of lower complexity
(molecular weight, heavy atom counts) than the set of
synthetic ligands. This opens the door to scaffold hopping
to a particular GPCR subspace. The second trend is that
predicting ligands is easier than predicting receptors. The
main explanation for this observation is that the ligand part
of the PLFP is probably more variable than the receptor part.
Alternative receptor descriptions still focusing on the trans-

Figure 9. A) Performance of 19 local models (panel A) in classifying and predicting GPCR-ligand pairs from Data set 2. The mean value
and standard deviation is given for all local models outputting a probability of binary association higher than 0.5. Criteria used to judge the
performance are recall (dark gray bars), precision (gray bars), and F-measure (light gray bars). B,C) Predicting possible protein-ligand
pairs for two external test sets (test set 1 of 35 endogenous GPCR ligands, dark gray bars; test set 2 of 25 synthetic GPCR ligands, light
gray bars) with 19 local models trained on Data set 2 (see Methods). The size of the ligand (panels B) or the receptor hit list (panel C) is
shown by a bar, and the rank of the true ligand/receptor in the hit list is displayed by a horizontal bar-crossing line. Vertical lines starting
from the bar and the bar-crossing line indicate the standard deviation of the hit list size and of the true hit rank, respectively. The number
on the top of the bar is the recall of the prediction on the entire test set.
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membrane binding site (e.g., receptor-derived pharmacophore
fingerprints)81 will be investigated in the near future to
address this issue. Using the inner products of vectors
describing both cavities and ligands19 instead of concatenat-
ing cavity and ligand vectors is another possibility to increase
the weight put on cavities arising from an homogeneous
family of similar receptors.

Comparison of PFLPs with Other Protein-Ligand
Fingerprints. The current study and PFLP descriptor differ
significantly from related chemogenomic approaches already
presented by three other groups. In the proteochemometrics
(PCM) approach developed by Wikberg et al.,17,18 proteins
are encoded by global descriptors based on the amino acid
sequence (occurrence of specific amino acids or principal
components of residue properties) or the topology of the
corresponding active site (e.g., binding site surface area).
Local structure-based descriptors of enzyme clefts were
recently introduced in PCM17 by registering the local amino
acid neighborhood of any protein residue in a binding pocket,
but the description is still based on the amino acid sequence
and not precise pharmacophoric 3-D information as in
PLFPs. Similarly, Bock et al.20 describe the target by global
features (surface tension, isoelectric point, accessible surface
area) of the full amino acid sequence without focusing on
the binding site. It presents the advantage to be independent
of the prior knowledge of the ligand-binding site but does
not take into account property selection pressure82 along the
amino acid sequence whether a residue is part of a ligand-
binding site or not. Our approach presents the advantage to
be highly focused on the protein-ligand interface by
selecting only ligands binding to the transmembrane cavity
and describing the latter cavities by pharmacophoric descrip-
tors. It is closer to the binding pocket kernel introduced by
Jacob et al. for the transmembrane cavity of GPCRs.19 The
main difference between the current study and Jacob’s report
lies in the data sets of ligands and targets used for learning.
Whereas Jacob et al. learned from 4051 GPCR-ligand
interactions inferred from the GLIDA GPCR ligand data-

base23 and a collection of 80 human GPCRs, our data set is
significantly more exhaustive in terms of protein-ligand
pairs (32 118 distinct pairs) and biological space coverage
(160 sequences).

Comparing PLFPs with Ligand Fingerprints. Does
encoding both protein cavity and ligand properties in a same
fingerprint provide some advantages over pure ligand-based
similarity search approaches6-10 relying on ligand properties
only? To address this question, we compared PLFPs with
the corresponding ligand fingerprints (SHED, DistFP,
MACCS) in their capacity to recover the true receptor
(receptor prediction mode) or the true ligand (ligand predic-
tion mode) of ligands/receptors present in both external test
sets. We should recall here that the purpose of this experi-
ment is not to compare PLFPs with state-of-the-art ligand
descriptors (e.g., circular fingerprints)68 but just to evaluate
the exact influence of the receptor cavity block in the
fingerprint.

In the first approach, classification models were computed
for each GPCR activity class (160 in total). Results were
disappointing (data not shown) mainly because of the lack
of really diverse ligands for numerous GPCR entries. We
then decided to investigate a simple nearest-neighbor ap-
proach using a Tanimoto coefficient on MACCS keys as
metric. In receptor prediction mode, all 21050 GPCR ligands
of the training set were ranked by decreasing similarity to
the ligand of the external test set, and corresponding receptors
were ranked accordingly. In ligand prediction mode, each
external ligand with its own set of decoys (“query”) was
compared to all known ligands of the corresponding GPCR
in the training set, and the query molecules were then ranked
by decreasing similarity score to any known GPCR ligand
of that receptor (Supporting Information Figure 1). Since
MACCS keys gave the best results among the three
investigated descriptors, we will discuss comparative results
between ligand-based and protein-ligand fingerprints using
MACCS keys only.

Figure 10. Examples of receptor prediction for four ligands of the external test sets 1 and 2, using the MACCS-RF model trained on Data
set 2. The name of the true GPCR is indicated along with its rank and the size of the corresponding receptor hit list.
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In receptor prediction mode, the PLFP outperformed the
corresponding MACCS keys in ranking as high as possible
the true receptor of 60 ligands from both external test sets
(Table 1). In ligand prediction mode, the PLFP has a perfor-
mance similar to that of the MACCS key for simple ligands
(test set 1 of endogenous ligands) but much better as far as the
complexity of the molecules increases (test set 2 of synthetic
ligands). A significant difference between PLFPs and simple
ligand fingerprints is their much wider applicability. A pure
ligand-based similarity search is restricted in our case to 160
activity classes (receptors) for which ligands are reported. Using
PLFPs, only receptors belonging to 3 GPCR subclasses (Adhe-
sion, MAS, SRBs)26 cannot be considered. Predictions can thus
be extended to a total of 320 possible activity classes including
orphan receptors.

CONCLUSIONS

Protein-ligand fingerprints (PLFPs) represent a novel way
of encoding structural information on both ligands and their
corresponding binding sites in order to directly mine
chemogenomic space. Encoding target profiles by NB
modeling on multiple activity classes into “Bayes affinity
fingerprints” was already shown to be superior to conven-
tional ligand-based similarity searches in comparing bioactive
ligands.6 The herein presented PLFP descriptor goes one step
further by adding to the same vector crucial structural details
of protein-ligand interfaces. The current study unambigu-
ously demonstrates that protein-ligand fingerprints outper-
form the corresponding ligand fingerprints in predicting either
putative ligands for a known target or putative targets for a
known ligand. In the current implementation, focusing on a
protein family, predicting ligands (ligand screening), is
significantly easier than predicting targets (target profiling).
Further studies are still required to find the proper balance
between ligand and protein description using specifically
designed kernels.83 PLFPs are probably better suited to
browse the full chemogenomic space than a target family
subspace as described in the current study, for the simple
reason that ligand space is several orders of magnitude more
diverse than target space. The broader the target space, the
more variable cavity descriptors should be. It however
requires a simple, generic, and size-independent description
of protein binding sites which is still missing today. The
current application to the universe of GPCRs shows that
PLFPs are in most cases superior to the corresponding ligand-
derived descriptors and most importantly applicable to a

much larger chemogenomic space. It also demonstrates that
numerous checks on various parameters (critical evaluation
of ligand and target space coverage, machine learning
algorithm, selection of decoys, true validation with external
test sets, and comparative evaluation of global versus local
models) are mandatory to optimize the peak performance of
QSAR models according to the screening scenario.
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