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REVIEW

Chemogenomic approaches to rational drug design

D Rognan

Bioinformatics of the Drug, CNRS UMR 7175-LC1, llikirch, France

Paradigms in drug design and discovery are changing at a significant pace. Concomitant to the sequencing of over 180 several
genomes, the high-throughput miniaturization of chemical synthesis and biological evaluation of a multiple compounds on
gene/protein expression and function opens the way to global drug-discovery approaches, no more focused on a single target
but on an entire family of related proteins or on a full metabolic pathway. Chemogenomics is this emerging research field
aimed at systematically studying the biological effect of a wide array of small molecular-weight ligands on a wide array of
macromolecular targets. Since the quantity of existing data (compounds, targets and assays) and of produced information
(gene/protein expression levels and binding constants) are too large for manual manipulation, information technologies play a
crucial role in planning, analysing and predicting chemogenomic data. The present review will focus on predictive in silico
chemogenomic approaches to foster rational drug design and derive information from the simultaneous biological evaluation
of multiple compounds on multiple targets. State-of-the-art methods for navigating in either ligand or target space will be
presented and concrete drug design applications will be mentioned.
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Introduction

Until the recent sequencing of the human genome (Lander
etal., 2001; Venter et al., 2001), drug discovery has long been
a multidisciplinary effort to optimize ligands properties
(potency, selectivity, pharmacokinetics) towards a single
macromolecular target. It is estimated that, out of the 20-
25000 human genes supposed to encode for ca. 3000
druggable targets (Russ and Lampel, 2005), only a subset of
that pharmacological space (ca. 800 proteins) has currently
been investigated by the pharmaceutical industry (Paolini
et al., 2006). Remarkably, medicinal chemistry followed a
parallel boost with the miniaturization and parallelization of
compound synthesis, such that over 10 million non-
redundant chemical structures covers the actual chemical
space, out of which ca. 1000 have been approved as drugs.
Therefore, only a small fraction of compounds describing the
current chemical space has been tested on a fraction of the
entire target space. Chemogenomics is the new interdisci-
plinary field, which attempts to fully match target and
ligand space, and ultimately identify all ligands of all targets
(Caron et al., 2001). Various definitions of overlapping fields
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(chemical genetics, chemical genomics) have been proposed.
We will herein consider a broad definition of chemoge-
nomics encompassing chemoproteomics, namely the study
of small-molecular-weight drug candidates on gene/protein
function. From the definition of the field, one easily
understands that chemogenomics will be at the interface of
chemistry, biology and consequently informatics since data
mining is required to extract reliable information. Further-
more, methodologies at the border of chemistry and biology
(medicinal chemistry), chemistry and informatics (chemo-
informatics), biology and informatics (bioinformatics) will
also play a major role in bringing these major disciplines
together. Chemogenomic approaches to drug discovery rely
on at least three components, each necessitating hard
experimental work: (1) a compound library, (2) a representa-
tive biological system (target library, single cell and whole
organism), and (3) a reliable readout (for example, gene/
protein expression, high-throughput binding or functional
assay). By definition, analysing chemogenomic data is a
never-ending learning process aimed at completing a two-
dimensional (2-D) matrix, where targets/genes are usually
reported as columns and compounds as rows, and where
reported values are usually binding constants (K;, ICsy) or
functional effects (for example, ECs(). This matrix is sparse as
far as all possible compounds have not been tested on all
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possible genes/proteins. Predictive chemogenomics will thus
attempt to fill existing holes by predicting compounds—
genes/proteins relationships. In silico approaches to predict
such data (target selectivity for various ligands and ligand
selectivity for various targets) will span pure ligand-based
approaches (comparison of known ligands to predict their
most probable targets), pure target-based approaches (com-
parison of targets or ligand-binding sites to predict their
most likely ligands) or wultimately target-ligand based
approaches (using experimental and predicted binding
affinity matrices).

Description of ligand and target spaces

Basic assumptions of any chemogenomic-based approach are
twofold: (i) compounds sharing some chemical similarity
should also share targets and (ii) targets sharing similar
ligands should share similar patterns (binding sites). Filling
the full theoretical chemogenomic matrix thus implies that
data on ‘unliganded’ targets should be gathered from the
closest ‘liganded’ neighbouring targets, and that data on
‘untargeted’ ligands should be gathered from the closest
‘targeted’ ligands. The true question is how to measure
distances between two ligands or two targets.
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Ligand space
To efficiently navigate in ligand space, one first needs
to describe the compound using appropriate properties
(descriptors) and then to use a master equation to measure
a distance between two compounds (similarity metric).
Descriptors are usually classified according to their dimen-
sionality ranging from one dimensional (1-D) to three-
dimensional (3-D) properties (Bender and Glen, 2004)
(Figure 1 and Table 1) 1-D descriptors are easy and fast to
compute. They describe global properties (for example,
molecular weight, atom and bond counts), which can be
derived from the chemical formulae and which are used in
combination to predict absorption, distribution, metabolism,
excretion and toxicity properties such as aqueous solubility
(Votano et al.,, 2004), 1-octanol-water partition coefficient
(Clark, 2005), plasma protein binding or bioavailability (Wang
et al., 2006), but also to classify compounds (for example,
drugs vs nondrugs (Sadowski and Kubinyi, 1998)) or ligands
from various target families (Morphy, 2006) by linear or non-
linear quantitative structure-activity relationships/quantita-
tive structure—property relationships (QSAR/QSPR) methods.
To fasten comparisons, 1-D linear representations of com-
pounds are often used. The most popular of this kind of
simplified string is the ‘Simplified Molecular Input Line Entry
System’ or SMILES (Weininger, 1988).
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Table 1 Ligand descriptors

Dimension Nature Examples

1-D Global Molecular weight, atom and bound counts (for example, number of H-bond donors, number of rings),
polar surface area, polarizability, log P)

2-D Topological Topological and connectivity indices, fragments, substructures (for example, maximum common substructures),
topological fingerprints (for example, structural keys)

3-D Conformational n-points pharmacophore, shape, field, spectra and fingerprints

Table 2 Structural classification of proteins

Dimension Classification scheme Databases
1-D Sequence UniProt (Wu et al., 2006) and Pfam (Finn et al., 2006)
Patterns PRINTS (Attwood et al., 2003) and PROSITE (Hulo et al., 2006)
2-D Secondary structure fold SCOP (Casbon and Sagi, 2005) and CATH (Reeves et al., 2006)
3-D Atomic coordinates PDB (Berman et al., 2000) and MODBASE (Pieper et al., 2006)
binding site Binding MOAD (Hu et al., 2005) and sc-PDB (Kellenberger et al., 2006)

Abbreviations: MOAD, Mother of All Databases; UniProt, The Universal Protein Resource.

Most ligand descriptors range in the family of 2-D
topological descriptors, where the connectivity table (list
of atoms and bonds) is parsed to encode both atomic and
bond properties. The most intuitive way to represent this
kind of information is the 2-D sketch of the structure
(Figure 1), which enables to browse a ligand library for
compounds sharing a particular 2-D motif (fragment,
substructure). Graph-based methods which transforms the
2-D structure into a molecular graph (atoms being the
nodes) are relatively popular for substructure search and
clustering chemical compounds into subfamilies (Raymond
et al.,, 2003), but present the noticeable disadvantage to
be computationally slow. Much faster are fingerprint-based
methods (Willett, 2006), where the occurrence of prede-
fined structural events (atoms, fragments, rings, substruc-
tures and 2-D pharmacophores) are encoded into bit strings
(sequence of ‘0" and ‘1’ digits) called ‘fingerprints’ which ere
easy to derive, handle and compare. Although receptor-
ligand recognition is a 3-D event, 2-D fingerprints have
been found repeatedly more appropriate true 3-D finger-
prints for similarity searches (Sheridan and Kearsley, 2002).
Latter descriptors encode conformation-specific properties
(atomic coordinates, 3-D pharmacophores, shapes, poten-
tials, fields, spectra; Table 1), and therefore usually necessi-
tate a common alignment of molecules to be compared in
the same 3-D Cartesian space (especially if grid-based fields
or potentials have to be compared) and a relevant sampling
of conformational space accessible to each ligand. To avoid
the alignment step which may cause false positives in a
virtual screen, 3-D information can be translated into a bit
string, which stores the occurrence of all possible pharma-
cophore tuplets (doublets, triplets and quadruplets) with
their corresponding features (for example, H-bond acceptor,
positively ionisable atom, and so on) and interfeature
distances. Hence, comparing bit strings is much easier than
comparing structures. Most similarity searches prefer a
binary representation of 2- or 3-D properties to derive

simple similarity indices, the most popular being the
Tanimoto coefficient (Equation 1)

<
Ta+b—c

¢ (1)
a is the count of bits on in compound A, b is the count of
bits on in compound B and c is the count of the bits on in
both compound A and B.

The Tanimoto coefficient will thus range from O for two
completely dissimilar structures to 1 for two identical
compounds.

Target space

Proteins are commonly classified according to their sequence
and structure (Table 2). The full amino-acid sequence is the
very first interesting information (Figure 2), which already
enables a reliable clustering of targets by family (for example,
G protein-coupled receptors (GPCRs) and kinases). However,
sequence lengths may considerably vary within a protein
family (for example, sequence lengths of human GPCRs
range from 290 to 6200 residues), such that analysing
similarities and differences first requires an alignment of
amino-acid sequences which can be tricky in case of large
insertions/deletions. Therefore, one may focus on specific
motifs (Attwood et al., 2003), which are a collection of
continuous residues specific of a protein family (for example,
DRY motif in TM III of rhodopsin-like GPCRs). To take into
account the structural organization of the target, it can be of
interest to look at the 2-D structure (mapping of «-helices,
p-sheets, coils and random structures) and even better at the
3-D structure (atomic coordinates provided by X-ray diffrac-
tion, NMR or molecular modelling) and/or the correspond-
ing fold. In chemogenomics-related approaches, one usually
focuses on the ligand-binding site, where structural simila-
rities among related targets are usually much higher than
when considering the full 1-D sequence or 3-D structure.

British Journal of Pharmacology
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Figure 2 Various representations of a protein using 1-D to 3-D properties.

Targets may also be classified according to their pharma-
cological profile (binding affinity for a panel of ligands)
which means according to the nature of ligands they
recognize (Paolini et al., 2006). Of course, there is a
considerable overlap between sequence- and ligand-based
classifications, since ligands generally bind to a subset of the
protein universe. However, relationships across protein
subfamilies are particularly interesting in drug design for
predicting/modifying the pharmacological profile of a drug.

Target-ligand space

It is possible to directly navigate in the protein-ligand space
by browsing full matrices in which either affinity or
structural information is stored. Experimental evaluation of
x compounds on y targets (for example, in vitro binding
affinity assay) leads to a matrix of xy numbers (for example,
ICso values), which can be used to predict the affinity of a
new compound to an existing target by multivariate linear
regression (Kauvar ef al., 1995), measure a structure-activity
relationships distance between two targets (Vieth et al.,
2004) and predict a global pharmacological profile (Krejsa
et al., 2003). A clear advantage of this approach is that it
relies on true binding affinity values and that experimentally
derived descriptors will usually outperform computed de-
scriptors. A clear drawback is the enormous amount of data
required to derive true information such that similar
approaches are not realistic, for example, in an academic
environment. Therefore, one might substitute experimental
with predicted affinities derived from either docking or 3-D
QSAR approaches (Matter and Schwab, 1999; Fukunishi et al.,
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2006), although extrapolation will be limited here in a tiny
protein space. Since binding free energy is extremely difficult
to predict, replacing affinity by molecular interaction
descriptors is possible. Of particular interest are structural
interaction fingerprints (IFPs) (Singh et al., 2006), which
converts atomic coordinates of a protein-ligand complex
into a bit string featuring for each residue of a binding site,
the type of molecular interactions (for example, H-bond,
aromatic interaction, hydrophobic contact) developed
by a co-crystallized or docked ligand. Comparing a series
of complexes between n ligands and a single protein or
between one ligand and n-related proteins is then performed
as for ligands by computing distances between 1-D IFPs
(Figure 3).

Ligand-based chemogenomic approaches

Annotating ligand libraries

The basic paradigm underlying ligand-based chemogenomic
approaches is that molecules sharing enough similarity to
existing biologically annotated ligands have enhanced
probability to share the same biological profile (Figure 4).
It is therefore very important to annotate chemical libraries
with biological information (targets, in vitro affinity data and
ADMET properties). Over recent years, there has been a huge
effort mainly from small biotech companies to compile such
data by an exhaustive survey of literature and patent
data (Table 3). Since chemogenomic approaches usually
focus on target families, most of these archives are related to
the most pharmaceutically important target families (GPCRs,
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Figure 3 (a) Deriving and (b) comparing protein-ligand complexes by molecular interaction fingerprints. ‘0’ and ‘1’ digits are replaced by
colour-coded squares for the ease of comparison (blue, hydrophobic interactions; green, aromatic interactions; red, hydrogen bonds).

kinases, nuclear hormone receptors (NHRs), proteases and
phosphodiesterases).

A good example has been provided by Novartis scientists
(Schuffenhauer et al., 2003) who linked chemical space to
target space by merging fields from separate chemical and
biological databases to provide a unified and searchable
chemogenomic database. On one hand, over 110000
pharmaceutical ligands were gathered from the MDL Drug
Data Report (Table 3). On the other hand, annotation of
targets was based on existing classifications for enzymes and
receptors. Linking MDDR ‘activity keys’ to the target
classification scheme enabled the annotation of 53000
compounds totalling 799 different activity keys and related
targets. Since the target’s sequence is linkable to the ligand,
sequence-based similarity searches of ligands for protein
homologues of liganded targets are therefore feasible.
Annotated reference ligands for a particular GPCR were used
as starting points to recover either new receptor ligands or
ligands of receptors close to the reference GPCR. Interest-
ingly, the efficiency of the virtual screening approach was
dependent on the phylogenetic distance between the
reference and the query targets. Another straightforward
application of biologically annotated compound libraries
is the design of target-directed combinatorial libraries
(Savchuk et al., 2004) focusing on chemotypes preferred by
a family of targets.

Natural products also cover a very interesting chemical
space of biological relevance because of the evolutionary
pressure put on these compounds to bind, usually through
highly specific mechanisms, to particular targets. The chemi-

cal space spanned by biologically annotated natural products
was described recently as a structural and hierarchical scaffold
tree (Koch et al., 2005), which can be browsed to design
natural product-oriented chemical libraries.

Biologically annotated compound libraries are a direct
source of potentially new biological mechanisms to correct a
phenotype. Root et al. (2003) designed a library of 2036
biologically active compounds covering 169 different bio-
chemical mechanisms, which was shown to be structurally
diverse and able to provide 85 hits in a cell viability and
proliferation assay. Among the 85 hits, 27 were supposed to
be active by new biochemical mechanisms.

Privileged structures

The term ‘privileged structure’ was first coined by Evans et al.
(1988), who noticed the promiscuity of the 1,4-benzodiaze-
pine scaffold for various targets (Figure 5). A privileged
structure is defined as ‘a substructure/scaffold exhibiting
strong preferences for a particular area of the target space (for
example, GPCRs) and suitable to orient the design of
targeted compound libraries’ (Klabunde and Hessler, 2002).
In fact, a recent and deeper analysis of drug-like ligands show
that privilege only appears upon a certain level of chemical
functionalization of the scaffold (Schnur et al., 2006). For
example, the biphenyl substructure is not a privileged
structure but a simple protein-binding motif, since it occurs
in a wide array of protein ligands with no particular
preference for a certain target family. However, extending
the biphenyl motif to a 2-tetrazolo-biphenyl dramatically

British Journal of Pharmacology
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enhance the specificity of the latter substructure for GPCRs
(Schnur et al.,, 2006). Remarkably, many substructures
apparently have corresponding binding sites in unrelated
target families (for example, GPCRs, kinases, ion channels,
proteases, nuclear hormone receptors). Only a few of them
(see an example in Figure 6) are really selective for a certain
target family (Schnur et al., 2006). A main reason for this
exquisite specificity is that specific binding sites for peculiar
substructure have been conserved along the evolution of
target subfamilies (Bondensgaard et al., 2004; Surgand et al.,
2006). Family-specific privileged structures are of prime
importance to design targeted libraries and enhance hit
rates when a protein from the targeted family is screened
experimentally. A nice application of designing targeted
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libraries was presented by Amgen (Xia et al., 2004). After
training a machine-learning algorithm to distinguish true
kinase inhibitors from non-kinase inhibitors, multiple
chemotypes could be selected to design a kinase-targeted
library, which yielded high enrichment in true inhibitors in
subsequent kinase inhibition assays.

Ligand-based in silico screening

Main target families can be distinguished by a simple look at
physicochemical properties (molecular weight, logP, polar
surface area, H-bond donor and acceptor counts) of their
cognate ligands (Morphy, 2006). One can thus easily imagine
that more sophisticated descriptors can be used to predict a
global target profile for any given compound, provided that
targets to be predicted are sufficiently well described by
existing ligands. Ligand-based in silico approaches to target
fishing begin to appear in the literature (Cases et al., 2005;
Bender et al., 2006; Bhavani et al., 2006; Mestres et al., 2006;
Nettles et al., 2006; Nidhi et al., 2006; Steindl et al., 2006).
They all share three basic components: (i) a set of reference
compounds from which 2-D (scaffold, substructure, finger-
prints) or 3-D descriptors (pharmacophore) are stored in a
database, (ii) a screening procedure using either QSAR,
machine learning (Bayesian classification, support vector
machines) or pharmacophore searches and (iii) a screening
collection to identify using above-described descriptors new
molecules likely to share the same target or target profile
than reference compounds (Figure 7).

Mestres et al. (Cases et al., 2005; Mestres et al., 2006) have
annotated a library of molecules targeting NHRs. Using a
hierarchical classification for 2000 ligands and 25 receptors,
chemogenomic links bridging ligand to target space can be
easily recovered to distinguish selective from promiscuous
scaffolds. Using Shannon Entropy descriptors (SHED) based on
the distribution of atom-centred feature pairs, any compound
collection can be screened to identify hits presenting SHED
distances to a reference NHR ligand beyond a defined thresh-
old and therefore likely to share the same NHR profile.

Novartis successfully applied a machine-learning algo-
rithm using Bayesian statistics (Xia et al., 2004) to predict
target profiles from extended connectivity fingerprints of
compounds from the biologically annotated Wombat data-
base (Nidhi et al., 2006). For each activity class (target), a
separate Bayesian model is trained to distinguish known
actives from known inactives. Predicting the most likely
targets of compounds in the test set is then operated by
predicting the probability of each test compound to be a
ligand of each of the targets. On average, the correct target
was found 77% of the time when training with Wombat
compounds and testing molecules from another dataset
(MDDR) over 10 different activity classes (Nidhi et al., 2006).
A significant improvement in the predictions is observed
when considering, instead of a series of individual probabili-
ties, the global profile of all training compounds in which all
target-associated probabilities are concatenated into a ‘Bayes
affinity fingerprint’ (Bender et al., 2006). Other 2- and 3-D
descriptors have been assessed for the same application. 2-D
descriptors were found to be more predictive with regard to
correct target prediction than a pure 3-D pharmacophoric
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Table 3 Biologically annotated compound libraries
Database Description Website
AurSCOPE Target family-oriented knowledge database containing pharmacological http://www.aureus-pharma.com

and pharmacokinetical data for 160 000 GPCR ligands and 77 000 kinase

inhibitors
Bioprint Biological profile (in vitro and clinical data) of 2400 small-molecular- http://www.cerep.fr/

weight drugs and drug-like compounds
ChemBank Storage of 50000 compounds and related biological properties in http://chembank.broad.harvard.edu/

441 high-throughput screening and small molecule microarray assays
ChemBioBase Target centric ligand databases (GPCRs, kinases, PDE) http://www.jubilantbiosys.com/
Kinase knowledge base kinase structure-activity and chemical synthesis data http://www.eidogen-sertanty.com/
MDL Drug Data Report 132000 biologically relevant compounds and well-defined derivatives http://www.mdli.com/
MedChem database 650000 compounds with biological and pharmacological information http://www.gvkbio.com
StARLITe Highly curated target-compound SAR relationships http://www.inpharmatica.co.uk/
Wombat 154 236 entries over 307 700 biological activities on 1320 unique targets http://sunsetmolecular.com/
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Figure 5 Permissivity of the 3H-1,4-benzodiazepin-2-one scaffold (in gray) across various targets. 1: Ro-5-3335, HIV-1 Tat inhibitor; 2:
Diazepam, GABA-A receptor ligand; 3: 231023: farnesyltransferase inhibitor; 4: CI-1044, phosphodiesterase 4 inhibitor; 5: pranazepide,
cholescystokinine (CCK) receptor antagonist; 6: BZ-423, F1FO ATPase inhibitor, 7:171644, oxytocin receptor antagonist, 8: 309060:
f-y secretase inhibitor; 9: 278588: Stat5 agonist; 10: 276345: KV, channel blocker.
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approach for test compounds structurally similar to those in
the training set. For singletons (compounds exhibiting no
strong similarity to molecules of the training set), the 3-D
descriptor is more predictive.

In all these approaches, one must first automatically
categorize compounds from the training set according to
their molecular target without checking whether each
compound really bind to its target, where (which binding
site) and how (agonist or antagonist for receptor ligands).
There is therefore a risk to train a machine-learning
algorithm with incorrect data and to generate false rules.
To overcome this drawback, more accurate but slower 3-D
strategies are possible. Among them, a promising approach is
to derive 3-D pharmacophores from protein-ligand com-
plexes for which experimentally determined atomic coordi-
nates and pharmacological activities exist (Steindl et al.,
2006). The target-annotated pharmacophore database can be
browsed to identify target(s) of new compounds by a classical
pharmacophore search. The advantage of the method relies
on the higher quality of the reference dataset, but is
nevertheless limited by the pharmacophore generation step
and the still limited chemical diversity observed among
protein data bank (PDB) ligands (Kellenberger et al., 2006).
For example, membrane receptors (for example, GPCRs, ion
channels) cannot be predicted by this approach, crystal-
lographic data being very sparse for these protein families,
although homology model-based pharmacophores may be
theoretically derived.

Target-based chemogenomic approaches

Controlling the selectivity of ligands towards related targets
from the same family is crucial information in early drug-
discovery stages. There is therefore a growing interest in
comparing all targets from the same family especially
those for which there is enough structural data (X-ray or
NMR structures) to enable a proteome-wide comparative
modelling of targets of still unknown structure (for example,
protein kinases). Target-based chemogenomic approaches
can be classified in two categories depending on whether
the amino-acid sequence or the 3-D structure of targets
is compared.

Sequence-based comparisons

Sequence-based approaches are intended to be used for any
kind of target family, provided that a multiple alignment of
all targets to compare is reachable. They are generally used
for target families where a lack of high-resolution structural
data hampers target comparison. GPCRs constitute an ideal
framework for sequence-based comparisons (Crossley, 2004;
Frimurer et al., 2005; Kratochwil et al., 2005; Surgand et al.,
2006), because it is a very important target family for drug
design and only one member of this family (bovine
rhodopsin) has been crystallized to date (Palczewski et al.,
2000). After aligning all sequences, key residues supposed to
map the binding site of most non-peptide ligands can be
extracted and concatenated into an ungapped sequence of a
few residues (Figure 8), which can be later used to derive
a distance matrix based on sequence identity (Surgand et al.,
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2006), sequence similarity (Kratochwil et al., 2005) or
physicochemical properties (Frimurer et al.,, 2005). An
exhaustive cavity-based clustering of 372 human GPCRs
has recently been proposed using such a strategy (Surgand
et al., 2006). Interestingly, it reproduces perfectly the full
sequence-based tree suggesting that only a few residues are
really important when comparing targets across a family.
This simplification enables a much simpler analysis of
features (binding site regions), which are responsible for
selective or permissive ligand binding by simply looking at
residue conservation (Crossley, 2004; Surgand et al., 2006).
There are several potential applications of cavity-based trees
in drug discovery. A simple one consists in target hopping,
which means discovering receptor ligands for a particular
receptor by considering first the known ligands of closely
related receptors. For example, CRTH2 receptor antagonists
could have been identified from existing angiotensin II type
1 receptor antagonists (Frimurer et al., 2005), because both
receptors were found close in the GPCR cavity-biased tree. In
addition, the design of targeted libraries towards a particular
area of the tree is facilitated by addressing those residues
responsible for selectivity/promiscuity (Frimurer et al., 2005;
Kratochwil et al., 2005).

Structure-based comparisons

Structure-based comparisons are only possible for target
families where there are enough good structural templates
(X-ray structures) to afford the homology modelling of
other related targets. In general, only ligand-binding sites
(Hu et al., 2005; Kellenberger et al., 2006) are compared, since
the basic aim of such comparisons is to understand the
selectivity/permissivity features of related targets of known
ligands.

A first possible strategy is to compare computed molecular
interaction fields from the cavities to compare (Naumann
and Matter, 2002; Hoppe et al., 2006; Pirard and Matter,
2006). Starting from a structural alignment of all targets,
interaction energies generated by rolling several probe atoms
(for example, sp3 carbon atom) at each point of 3-D grid
encompassing the ligand-binding site are then concatenated
into a MIF vector, which can be placed in a global matrix
where rows describe targets and columns interaction en-
ergies at a given 3-D grid point (Figure 9) Comparing the
MIFs and clustering the cognate targets can be done either by
analysing the matrix by principal component analysis
(Naumann and Matter, 2002; Pirard and Matter, 2006) or
by calculating a MIF distance, which is later transformed in a
target tree (Hoppe et al., 2006). A clear issue with this
approach is that the comparison is highly dependent on the
structural alignment, the grid resolution and the choice of
the probe atoms. Moreover, it cannot be applied to targets of
different families. However, its has been successfully applied
to protein kinases (Naumann and Matter, 2002; Hoppe et al.,
2006), serine proteases (Hoppe et al., 2006), matrix metallo-
proteinases (Pirard and Matter, 2006) and nuclear hormone
receptors (Hoppe et al., 2006) to pinpoint cavity regions or
subpockets explaining either selective or promiscuous ligand
binding, and thus to guide the design of compound libraries
towards the desirable selectivity pattern.
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To avoid the previously reported structural alignment bias,
3-D atomic protein coordinates can be directly compared to
measure a distance between two targets. Global structural
alignment methods (Shindyalov and Bourne, 1998; Holm
and Park, 2000; Standley et al., 2005) usually count the
number of structurally equivalent residues by comparing
overlapping sequence fragments. Such methods, however,
do not work very well for discontinuous sequences (active
sites) and for proteins exhibiting different folds. A second
approach is to identify pre-defined structural motifs or
templates (for example, Ser-His—Asp catalytic triad in serine
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proteases) and align a query to a reference protein by
matching templates (Artymiuk ef al., 1994; Wallace et al.,
1997). However, numerous proteins (for example, kinases,
GPCRs, ion channels) may share a binding site for a unique
ligand (ATP) without sharing any structural template
similarity. Most recent approaches to generate structural
alignment describe proteins by physicochemical properties
at representative locations. Molecular surfaces can be easily
discretized in either chemically labelled sparse points
(Rosen et al., 1998) or graphs (Kinoshita and Nakamura,
2003) and therefore aligned to maximize surface overlap
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with any reference. A database of protein surfaces (eF-site)
has successfully been browsed to predict the function of
a hypothetical archaeon protein (MJ0226) by detection of
a mononucleotide binding site (Kinoshita and Nakamura,
2003). Surface-based comparisons are, however, relatively
slow and thus incompatible with proteome-wide compa-
risons. Recent and faster methods (Schmitt et al., 2002;
Jambon et al., 2003; Shulman-Peleg et al., 2004; Powers et al.,
2006; Gold and Jackson, 2006) have been developed over the
last 5 years. They all have in common to represent an active
site of interest by pseudocenters (dummy atoms located
along or close to every side chain of interest) encoding
physicochemical properties (H-bonding capacity, aromaticity,
hydrophobicity, charge) of their cognate residues, pseudo-
centers being linked together by edges and thus defining a
molecular graph. Alignment is operated by detection of
maximal common subgraphs (clique detection) (Gardiner
et al., 1997) or geometric hashing (Nussinov and Wolfson,
1991) from defined pseudocenters. Local similarity at ligand
binding subpockets can thus be detected for proteins with
totally different folds and catalytic activities. Predicted
similar binding sites can even be linked together in a global
network to better position a protein in the target space
(Zhang and Grigorov, 2006).

A nice example of binding site similarities for distant
proteins has been exemplified by Weber et al. (2004), who
detected cross-reactivity of arylsulfonamide-based COX-2
inhibitors with human carbonic anhydrase (HCA) based on
the similarity of COX-2 and HCA binding pockets. A
problem with these matching techniques is that the
computed similarity score (usually dependent on the
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number of atom/pseudocenter/triangle matches) is not
always easy to interpret, notably for active sites of different
dimensions, because large actives sites will have a tendency
to present more matches than small ones even if the latter
are more similar. Therefore, normalized distance metrics
similar to those used for comparing ligands are needed.
A promising approach is proposed by Surgand (2006), who
discretizes an active site by a dimensionless 80-triangle
sphere and projects, from cff atoms of cavity-lining residues
to the sphere centre, various topological and physicochemi-
cal descriptors. A distance between two active sites is thus
simply computed by summing up the normalized differences
in descriptor space between each triangle of the sphere. The
method was able to recognize remote binding site simila-
rities (Figure 10) between a GPCR (GPR30) and a NHR
(estrogen receptor «) sharing 4-hydroxytamoxifen as high-
affinity ligand (Revankar et al., 2005).

The current speed of such comparisons enables the
definition of all-against-all similarity matrices (Schmitt
et al., 2002; Shulman-Peleg et al., 2004; Gold and Jackson,
2006), and opens the door to various applications:
(i) functional analysis and classification of ligand binding
sites, (ii) predicting potential ligands, and (iii) anticipating
side effects caused by targeting a peculiar protein.

An alternative approach to compare ligand-binding sites is
to evaluate the similarity of potential ligand binding
envelopes for known X-ray structure of apo or holoproteins
(An et al., 2005). A first draft of the human pocketome, a
collection of all possible ligand binding envelopes for a set of
943 crystallized human proteins, has been proposed recently
(An et al.,, 2005) and clustered by envelope similarity.
Interestingly, the ligand envelope-based tree only partially
matches alternative trees based on the amino-acid sequence
of the target proteins or on bound-ligand similarities (An
et al., 2005).

Another recently proposed approach to compare proteins
of the same family is to look at packing defects (Fernandez
et al., 2004) localized at the so-called ‘dehydrons’ (backbone
heavy atoms with unsatisfied H-bonding partners), which
are good indicators of protein capacity to interact with
potential ligands and can be predicted form the amino-acid
sequence. Packing distances between 32 PDB-reported
kinases were shown to be almost identical to the pharma-
cological distance between these kinases estimated from an
experimental affinity matrix derived for 17 inhibitors
(Fernandez and Maddipati, 2006) and to efficiently guide
the structure-based design of selective inhibitors for various
enzymes specifically designed to target packing defects
(Fernandez, 2005).

Target-ligand based chemogenomic approaches

Chemical annotation of target binding sites

Numerous biologically annotated chemical libraries can be
browsed (Table 3) to link chemical to target spaces and focus
ligand-based design to target families (Bender et al., 2006;
Nettles et al., 2006; Nidhi et al., 2006). However, as far as
information about the binding site is missing, there is a
potential risk to compare compounds sharing the same

British Journal of Pharmacology
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Figure 10 Screening a non-redundant subset of 1060 binding sites form the sc-PDB target library (Kellenberger et al., 2006) for ligand
binding sites similar to that of GPR30 for 4-hydroxy-tamoxifen. (a) Ranking sc-PDB entries by decreasing similarity (ranging from 1 to 0) to the
GPR30 4-hydroxy-tamoxifen binding site (extrapolated from a consensus list of 30 residues delimiting a canonical non-peptide binding site for
most GPCR ligands as proposed by Surgand et al. (2006). The 3ert sc-PDB entry (4-hydroxy-tamoxifen binding site in the estrogen receptor o)
is ranked second among 1060 investigated binding site. (b) Predicted alignment of GPR30 (blue) to ER-« binding site (green) for 4-OH
tamoxifen (white ball and sticks). Both binding sites present a water-accessible negatively charged residue and a buried hydrophobic region
(similarity index of 0.79 according to the SiteAlign program (Surgand et al., 2006)).

target but not the same binding site (for example, orthosteric
and allosteric ligands). It is therefore important to rigorously
annotate protein sequences and/or binding site by the
chemotype of the ligands they can recognize. The SMID
(Small Molecule Interaction Database) archive is an interest-
ing initiative to annotate protein amino-acid sequences by
domain-specific ligands (Snyder et al., 2006). A total of 6300
ligands covering 230000 experimentally observed domain/
small molecule interactions have been stored in a relational
database, which can be browsed to predict the most likely
ligand of proteins of unknown 3-D structures by comparison
of their domains to known protein structures using a reverse
position-specific basic local alignment search (BLAST) pro-
cedures (Feldman et al., 2006). Ligand-annotated binding
sites from the PDB are annotated in several databases
(Kellenberger et al., 2006), but only two of them (Binding-
MOAD, sc-PDB; Table 3) consider the ligand from a
pharmacological point of view and are therefore of interest
for chemogenomic approaches. Such databases can be used
to prioritize either ligands or molecular scaffolds for design-
ing targeted compound libraries covering a well-defined
target space (Figure 11).

2-D searches

To browse and predict protein-ligand complexes, one needs
to set up simple descriptors for both ligands and proteins
from knowledge databases (Table 3) and concatenate them
into a single protein-ligand description. The easiest way to
encode this information is to start form experimental
binding affinity matrices (Kauvar et al., 1995; Krejsa et al.,
2003; Vieth et al., 2004) and to define appropriate QSAR/
QSPR models to predict the affinity of new compounds for
registered targets or the full virtual profile by general
neighbourhood behaviour modelling (Krejsa et al., 2003).
Another approach has recently been proposed for deorpha-
nizing GPCRs in which a ligand fingerprint is merged to a
sequence-based target fingerprint if a high-affinity complex
(pK;>7) has been reported in the PDSP database (http://
pdsp.med.unc.edu/). A machine-learning algorithm was
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trained from 5319 non-redundant known complexes and
applied to a set of 1911415 virtual complexes (55 orphan
receptors and 34753 drug-like compounds from the NCI
database) to predict the most likely associations (Bock and
Gough, 2005). Out-of-sample validations (finding the recep-
tors of a promiscuous ligand and the ligands of a single
target) were in general agreement with literature data and
some predictions still awaiting experimental validations
have been made.

3-D searches

A straightforward way to predict putative targets of ligands is
to dock each of the ligands of the compound library into
each of the active site of the target library. This strategy has
been validated by several groups and proved able to recover
the known ligands of known targets and predict their off-
targets and thus some potential side effects (Chen and Zhi,
2001; Paul et al., 2004). Up to now, there is a single successful
target fishing application described in the literature utilizing
a docking approach (Muller et al., 2006). Hence, inverse
docking requires first a high-quality 3-D dataset of binding
sites whose automated set-up is quite difficult, and second an
accurate scoring function to properly rank targets. A problem
is that energy-based scoring functions are not very good at
quantifying very heterogeneous protein-ligand complexes
by decreasing binding-free energies (Ferrara ef al., 2004) and
that alternative ways of scoring are requested for efficient
target selection. Among the most promising methods is the
computation of IFPs between a protein and its ligand.
Practically, IFPs are simple bit strings that convert 3-D
information about protein-ligand interactions into simple
1-D bit vector representations (Figure 3) that can be quickly
compared by the use of traditional metrics (for example,
Tanimoto coefficient, Euclidian distance). Usage of IFPs have
shown several promising features: (i) enhancing the quality
of pose prediction in docking experiments (Deng et al., 2004;
Marcou and Rognan, 2006); (ii) clustering protein-ligand
interactions for a panel of related inhibitors according to
the diversity of their interaction with a target subfamily
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Figure 11

Querying the sc-PDB chemogenomic database (http://bioinfo-pharma.u-strasbg.fr/scPDB) for rule-of-five compliant (Lipinski et al.,

2001) small molecular weight fragments (MW <300, clogP <3, H-bond donor count <3, H-bond acceptor count <6) co-crystallized with

protein kinases.

(Chuaqui et al., 2005; Marcou and Rognan, 2006);
(iii) assisting target-biased library design (Deng et al., 2006).

However, docking-independent 3-D methods may also
constitute an interesting approach to predict protein—
ligand complexes. A significant problem is to encode
protein and ligand properties with similar descriptors such
that one partner can be retrieved by using the second one
as a query. A promising solution is proposed with the
CoLiBRI (Complementary Ligands Based on Receptor
Information) method (Oloff et al., 2006) in which both
ligand and active site atoms are described by a same vector
of molecular descriptors derived from shape and electronic
properties of isolated atoms. Therefore, it is possible to
directly correlate chemical similarities between active
site and their ligands by mapping patterns of active sites
onto patterns of their complementary ligands. When
applied to a test data set of 800 high-resolution PDB
complexes, the complementary ligand was ranked among
the top 1% of a large library in 90% of tested active
sites. Accuracy dropped significantly for active sites very
different from those in the test set but still usable as a

prefiltering step for removing the most improbable ligands
(Oloff et al., 2006).

Concluding remarks

Chemogenomic approaches to rational drug discovery have
been exploding in the last years as high-throughput data
(structure, binding affinity and functional effects) become
available for both targets and ligands of pharmaceutical
interest. Numerous ways to link those data have been
proposed focusing on either ligand or target neighbourhood.
A clear data organization and storage is necessary to foster
such applications and begins to emerge for the most
interesting target families (kinases, GPCRs and NHRs). In a
near feature, an earlier and better control of ligand selectivity
can be anticipated by using chemogenomic data. This does
not mean that more selective ligands are going to be
designed, but simply that the observed selectivity profile of
the compound will be compatible with a therapeutical usage.
In addition, novel genomic targets could be better addressed
after locating them in the target space and exploiting the
associated chemical information.
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